288
Views
84
CrossRef citations to date
0
Altmetric
Research Article

Biochemical and cellular toxicology of peroxynitrite: implications in cell death and autoimmune phenomenon

, &
Pages 388-396 | Received 01 Dec 2008, Accepted 22 Dec 2008, Published online: 07 Apr 2009

References

  • Szabo, C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett. (2003); 140–141: 105–112.
  • Pacher, P., Beckman, JS., Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. (2007); 87(1): 315–424.
  • Szabo, C., Ischiropoulos, H., Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov. (2007); 6(8): 662–80.
  • Squadrito, GL., Pryor, WA. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Rad Biol Med. (1998); 25(4–5): 392–403.
  • Ahsan, H., Ali, A., Ali, R. Oxygen free radicals and systemic autoimmunity. Clin Exp Immunol. (2003); 131(3): 398–404.
  • Waris, G., Ahsan, H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog. (2006); 5:14.
  • Pryor, WA., Squadrito, GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. (1995); 268(5 pt 1): L699–L722.
  • Radi, R., Peluffo, G., Alvarez, MN., Naviliat, M., Cayota, A.Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med. (2001); 30(5): 463–88.
  • Beckman, JS., Chen, J., Ischiropoulos, H., Crow, JP. Oxidative chemistry of peroxynitrite. Methods Enzymol. (1994); 233: 229–40.
  • Koppenol, WH., Moreno, JJ., Pryor, WA., Ischiropoulos, H., Beckman, JS. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol. (1992); 5(6): 834–42.
  • Uppu, R.M., Pryor, WA. Synthesis of peroxynitrite in a two-phase system using isoamyl nitrite and hydrogen peroxide. Anal Biochem. (1996); 236(2): 242–249.
  • Dixit, K., Moinuddin Ali, A. Immunological studies on peroxynitrite modified DNA. Life Sci. (2005); 77(21): 2626–42.
  • Habib, S., MoinuddinAli, R. Peroxynitrite-modified DNA: a better antigen for systemic lupus erythematosus anti-DNA autoantibodies. Biotechnol Appl Biochem. (2006); 43(2), 65–70.
  • Robinson, KM., Beckman, JS. Synthesis of peroxynitrite from nitrite and hydrogen peroxide. Methods Enzymol. (2005); 396: 207–214.
  • Forstermann, U., Munzel, T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. (2006); 113(13): 1708–14.
  • Romero, N., Denicola, A., Radi, R. Red blood cells in the metabolism of nitric oxide-derived peroxynitrite. IUBMB Life. (2006); 58(10): 572–80.
  • Ahmad, R., Rasheed, Z., Kaushal, E., Singh, D., Ahsan, H. Biochemical evaluation of human DNA-lysine photoadduct treated with peroxynitrite. Toxicol Mech Meth. (2008); 18(7): 589–595.
  • Maeda, H., Akaike, T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc). (1998); 63(7): 854–865.
  • Ohshima, H., Bartsch, H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. (1994); 305(2): 253–264.
  • Rubbo, H. Nitric oxide and peroxynitrite in lipid peroxidation. Medicina (B Aires). (1998); 58(4), 361–366.
  • Rubbo, H., Freeman, BA. Nitric oxide regulation of lipid oxidation reactions: formation and analysis of nitrogen-containing oxidized lipid derivatives. Methods Enzymol. (1996); 269: 385–394.
  • Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., Freeman, BA. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation.Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem. (1994); 269(42): 26066–26075.
  • Ramezanian, MS., Padmaja, S., Koppenol, WH. Nitration and hydroxylation of phenolic compounds by Peroxynitrite. Chem Res Toxicol. (1996); 9(1): 232–240.
  • Ramezanian, MS., Padmaja, S., Koppenol, WH. Nitration and hydroxylation of phenolic compounds by Peroxynitrite. Methods Enzymol. (1996); 269: 195–201.
  • Alvarez, B., Radi, R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids. (2003); 25(3–4): 295–311.
  • Luxford, C., Morin, B., Dean, RT., Davies, MJ. Histone H1 and other protein- and amino acid-hydroperoxides can give rise to free radicals which oxidize DNA. Biochem J. (1999); 344(1), 125–134.
  • Douki, T., Cadet, J. Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Rad Res. (1996); 24(5): 369–380.
  • Douki, T., Cadet, J., Ames, BN. An adduct between peroxynitrite and 2’-deoxyguanosine: 4,5-dihydro-5-hydroxy-4-(nitrosooxy)- 2’-deoxyguanosine. Chem Res Toixcol. (1996); 9(1): 3–7.
  • Wiseman, H., Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. (1996); 313(1): 17–29.
  • Ohshima, H., Virág, L., Souza, J., Yermilov, V., Pignatelli, B., Masuda, M., Szabo, C. Detection of certain peroxynitrite-induced DNA modifications. Methods Mol Biol. (2002); 186: 77–88.
  • Szabo, C., Ohshima, H. DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide. (1997); 1(7): 373–385.
  • Tretyakova, NY., Burney, S., Pamir, B., Wishnok, JS., Dedon, PC., Wogan, GN., Tannenbaum, SR. Peroxynitrite-induced DNA damage in the sup F gene: correlation with the mutational spectrum. Mutat Res, (2000); 447(2): 287–303.
  • Ames, BN., Shigenaga, MK., Gold, LS. DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ Health Perspect. (1993); 101(suppl 5): 35–44.
  • Ames, BN., Shigenaga, MK., Hagen, TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci (USA). (1993); 90(17): 7915–7922.
  • Sawa, T., Ohshima, H. Nitrative DNA damage in inflammation and its possible role in carcinogenesis. Nitric Oxide. (2006); 14(2): 91–100.
  • Yermilov, V., Rubio, J., Becchi, M., Friesen, MD., Pignatelli, B., Ohshima, H. Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis. (1995); 16(9): 2045–2050.
  • Ohshima, H. Genetic and epigenetic damage induced by reactive nitrogen species: implications in carcinogenesis. Toxicol Lett. (2003); 140–141: 99–104.
  • Suzuki, T., Mower, HF., Friesen, MD., Gilibert, I., Sawa, T., Ohshima, H. Nitration and nitrosation of N-acetyl-L-tryptophan and tryptophan residues in proteins by various reactive nitrogen species. Free Rad Biol Med. (2004); 37(5): 671–681.
  • Beckman, JS., Koppenol, WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. (1996); 271(5 Pt 1): C1424–1437.
  • Beckman, JS. Oxidative damage and tyrosine nitration from Peroxynitrite. Chem Res Toxicol. (1996); 9(5): 836–844.
  • Beckman, JS. Protein tyrosine nitration and peroxynitrite. FASEB J. (2002); 16(9): 1144.
  • Greenacre, SA., Ischiropoulos, H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Rad Res. (2001); 34(6): 541–581.
  • Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin. J.C., Smith, C.D., Beckman, J.S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophy. (1992); 298(2): 431–437.
  • Hausladen, A., Fridovich, I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem. (1994); 269(47): 29405–29408.
  • Mihm, M.J., Yu, F., Carnes, C.A., Reiser, P.J., McCarthy, P.M., Van Wagoner, D.R., Bauer, J.A. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation. (2001); 104(2): 174–180.
  • Grune, T., Blasig, I.E., Sitte, N., Roloff, B., Haseloff. R., Davies, K.J. Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem. (1998); 273(18): 10857–10862.
  • Aykac-Toker, G., Bulgurcuoglu, S., Kocak-Toker, N. Effect of peroxynitrite on glutaredoxin. Hum Exp Toxicol. (2001); 20(7): 373–376.
  • Cuzzocrea, S., Zingarelli, B., O’Connor, M., Salzman, A.L., Szabo, C. Effect of L-buthionine-(S,R)-sulphoximine, an inhibitor of gamma-glutamylcysteine synthetase on peroxynitrite and endotoxic shock-induced vascular failure. Br J Pharmacol. (1998); 123(3): 525–537.
  • Van der Vliet, A., Smith, D., O’Neill, C.A., Kaur, H., Darley- Usmar, V., Cross, C.E., Halliwell, B. Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J. (1994); 303(1): 295–301.
  • Klebl, B.M., Ayoub, A.T., Pette, D. Protein oxidation, tyrosine nitration, and inactivation of sacroplasmic reticulum Ca2+-ATPase in low frequency stimulated rabbit muscle. FEBS Lett. (1998); 422(3): 381–384.
  • Kerry, N., Rice-Evans, C. Peroxynitrite oxidizes catechols to o-quinones. FEBS Lett. (1998); 437(3): 167–171.
  • Goldstein, S., Czapski, G. Reactivity of Peroxynitrite versus simultaneous generation of (*)NO and O(2)(*)(-) towards NADH. Chem Res Toxicol. (2000); 13(8): 736–741.
  • deRojas-Walker, T., Tamir, S., Ji, H., Wishnok, J.S., Tannenbaum, S.R. Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem Res Toxicol. (1995); 8(3): 473–477.
  • Jagtap, P., Szabo, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov. (2005); 4(5): 421–40.
  • Virag, L., Szabo, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev; 54(3): 375–429.
  • Szabo, C., Pacher, P., Swanson, RA. Novel modulators of poly(ADP- ribose) polymerase. Trends Pharmacol Sci. (2006); 27(12): 626–30.
  • Szabo, C. Poly(ADP-ribose) polymerase activation by reactive nitrogen species – relevance for the pathogenesis of inflammation. Nitric Oxide (2006); 14(2): 169–179.
  • Pacher, P., Szabo, C. Cardiovasc Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Drug Rev. (2007); 25(3): 235–60.
  • Szabo, C., Salzman, A.L., Ischiropoulos, H. Peroxynitrite-mediated oxidation of dihydrorhodamine 123 occurs in early stages of endotoxic and hemorrhagic shock and ischemia-reperfusion injury. FEBS Lett. (1995); 372(2–3): 229–32.
  • Szabo, G., Bahrle, S., Stumpf, N., Sonnenberg, K., Szabo, E.E., Pacher, P., Csont, T., Schulz, R., Dengler, T.J., Liaudet, L., Jagtap, P.G., Southan, G.J., Vahl, C.F., Hagl, S., Szabo, C. Poly(ADP-Ribose) polymerase inhibition reduces reperfusion injury after heart transplantation. Circ Res. (2002); 90(1): 100–6.
  • Szabo, C., Dawson, V.L. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci. (1998); 19(7): 287–98.
  • Zingarelli, B., Salzman, A.L., Szabo, C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res. (1998); 83(1): 85–94.
  • Szabo, C. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia-reperfusion injury. Shock. (1996); 6(2): 79–88.
  • Thiemermann, C. Development of novel, water-soluble inhibitors of poly (adenosine 5’-diphosphate ribose) synthetase activity for use in shock and ischemia-reperfusion injury. Crit Care Med. (2002); 30(5): 1163–5.
  • Pacher, P., Cziraki, A., Mabley, J.G., Liaudet, L., Papp, L., Szabo, C. Biochem Pharmacol. (2002) Dec 15; 64(12): 1785–91. Role of poly(ADP-ribose) polymerase activation in endotoxin-induced cardiac collapse in rodents.
  • Pacher, P., Liaudet, L., Bai, P., Virag, L., Mabley, J.G., Hasko, G., Szabo, C. Activation of poly(ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. J Pharmacol Exp Ther. (2002); 300(3): 862–7.
  • Pacher, P., Liaudet, L., Mabley. J., Komjati, K., Szabo, C. Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. J Am Coll Cardiol. (2002); 40(5): 1006–16.
  • Pacher, P., Liaudet, L., Soriano, F.G., Mabley, J.G., Szabo, E., Szabo, C. The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes. (2002); 51(2): 514–21.
  • Pacher, P., Liaudet, L., Bai, P., Mabley, J.G., Kaminski, P.M., Virag, L., Deb, A., Szabo, E., Ungvari, Z., Wolin, M.S., Groves, J.T., Szabo, C. Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation. (2003); 107(6): 896–904.
  • Pacher, P., Vaslin, A., Benko, R., Mabley, J.G., Liaudet, L., Hasko, G., Marton, A., Batkai, S., Kollai, M., Szabo, C. A new, potent poly(ADP-ribose) polymerase inhibitor improves cardiac and vascular dysfunction associated with advanced aging. J Pharmacol Exp Ther. (2004); 311(2): 485–91.
  • Pacher, P., Schulz, R., Liaudet, L., Szabo, C. Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci. (2005); 26(6): 302–10.
  • Ungvari, Z., Gupte, S.A., Recchia, F.A., Batkai, S., Pacher, P. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol. (2005); 3(3): 221–9.
  • Pacher. P., Szabo, C. Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol. (2006); 6(2): 136–41.
  • Evgenov, O.V., Liaudet, L. Role of nitrosative stress and activation of poly (ADP-ribose) polymerase-1 in cardiovascular failure associated with septic and hemorrhagic shock. Curr Vasc Pharmacol. (2005); 3(3): 293–9.
  • Jagtap, P., Soriano, F.G., Virag, L., Liaudet, L., Mabley, J., Szabo, E., Hasko, G., Marton, A., Lorigados, C.B., Gallyas, F.Jr., Sumegi, B., Hoyt, D.G., Baloglu, E., Van Duzer, J., Salzman, A.L., Southan, G.J., Szabo, C. Novel phenanthridinone inhibitors of poly (adenosine 5’-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents. Crit Care Med. (2002); 30(5): 1071–82.
  • Soriano, F.G., Liaudet, L., Szabo, E., Virag, L., Mabley, J.G., Pacher, P., Szabo, C. Resistance to acute septic peritonitis in poly(ADP-ribose) polymerase-1-deficient mice. Shock. (2002); 17(4): 286–92.
  • Liaudet, L., Soriano, F.G., Szabo, E., Virag, L., Mabley, J.G., Salzman, A.L., Szabo, C. Protection against hemorrhagic shock in mice genetically deficient in poly(ADP-ribose)polymerase. Proc Natl Acad Sci U S A. (2000); 97(18): 10203–8.
  • Cuzzocrea S. Shock, inflammation and PARP. Pharmacol Res. (2005); 52(1): 72–82.
  • Pacher, P., Obrosova, I.G., Mabley, J.G., Szabó, C. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications.Emerging new therapeutical strategies. Curr Med Chem. (2005); 12(3): 267–75.
  • Szabo, C., Mabley, J.G., Moeller, S.M., Shimanovich, R., Pacher, P., Virag, L., Soriano, F.G., Van Duzer, J.H., Williams,W., Salzman, A.L., Groves, J.T. Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med. (2002); 8(10): 571–80.
  • Szabo, C., Zanchi, A., Komjati, K., Pacher, P., Krolewski, A.S., Quist, W.C., LoGerfo, F.W., Horton, E.S., Veves, A. Poly (ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation. (2002); 106(21): 2680–6.
  • Obrosova, I.G., Li, F., Abatan, O.I., Forsell, M.A., Komjáti, K., Pacher, P., Szabó, C., Stevens, M.J. Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes. (2004); 53(3): 711–20.
  • Ilnytska, O., Lyzogubov, V.V., Stevens, M.J., Drel, V.R., Mashtalir, N., Pacher. P., Yorek, M.A., Obrosova, I.G. Poly(ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy. Diabetes. (2006); 55(6): 1686–94.
  • Soriano, F.G., Virag, L., Jagtap, P., Szabo, E., Mabley, J.G., Liaudet, L., Marton, A., Hoyt, D.G., Murthy, K.G., Salzman, A.L., Southan, G.J., Szabo, C. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med. (2001); 7(1): 108–13.
  • Soriano, F.G., Pacher, P., Mabley, J., Liaudet, L., Szabo, C. Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase. Circ Res. (2001); 89(8): 684–91.
  • Liu, Z., Martin, L.J. Motor neurons rapidly accumulate DNA single-strand breaks after in vitro exposure to nitric oxide and peroxnitrite and in vivo axotomy. J Comp Neurol. (2001); 432(1): 35–60.
  • Whiteman, M., Armstrong, J.S., Cheung, N.S., Siau, J.L., Rose, P., Schantz, J.T., Jones, D.P., Halliwell, B. Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J. (2004); 18(12): 1395–7.
  • Radi, R., Cassina, A., Hodara, R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem. (2002); 383(3–4): 401–9.
  • Klotz, LO., Schroeder, P., Sies, H. Peroxynitrite signaling: receptor tyrosine kinases and activation of stress-responsive pathways. Free Rad Biol Med. (2002); 33(6): 737–743.
  • Cantoni, O., Tommasini, I., Cerioni, L., Palomba, L., Carloni, E., Guidarelli, A. Survival pathways triggered by peroxynitrite in cells belonging to the monocyte/macrophage lineage. Comp Biochem Physiol A Mol Integr Physiol. (2005); 142(2): 118–123.
  • Liaudet, L., Soriano, FG., Szabo, C. Biology of nitric oxide signaling. Crit Care Med. (2000); 28(4 Suppl): N37–52.
  • Cantoni, O., Palomba, L., Guidarelli, A., Tommasini, I., Cerioni, L., Sestili, P. Cell signaling and cytotoxicity by peroxynitrite. Environ Health Perspect. (2002); 110 (Suppl 5): 823–5.
  • Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., Lipton, SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA. (1995); 92(16): 7162–6.
  • Leist, M., Fava, E., Montecucco, C., Nicotera, P. Peroxynitrite and nitric oxide donors induce neuronal apoptosis by eliciting autocrine excitotoxicity. Eur J Neurosci. (1997); 9(7): 1488–98.
  • Leist, M., Volbracht, C., Kühnle, S., Fava, E., Ferrando-May, E., Nicotera, P. Caspase-mediated apoptosis in neuronal excitotoxicity triggered by nitric oxide. Mol Med. (1997); 3(11): 750–64.
  • Zhang, Y., Wang, H., Li, J., Jimenez, D.A., Levitan, E.S., Aizenman, E., Rosenberg, P.A. Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci. (2004); 24(47): 10616–27.
  • Shacka, JJ., Sahawneh, M.A., Gonzalez, J.D., Ye, Y.Z., D’Alessandro, T.L., Estevez, A.G. Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells. Cell Death Differ. (2006); 13(9): 1506–14.
  • Dickhout, J.G., Hossain, G.S., Pozza, L.M., Zhou, J., Lhotak, S., Austin, R.C. Peroxynitrite causes endoplasmic reticulum stress and apoptosis in human vascular endothelium: implications in atherogenesis. Arterioscler Thromb Vasc Biol. (2005); 25(12): 2623–9.
  • Burney, S., Caulfield, J.L., Niles, J.C., Wishnok, J.S., Tannenbaum, S.R. The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res. (1999); 424(1–2): 37–49.
  • Habib, S., MoinuddinAli, R. Acquired antigenicity of DNA after modification with peroxynitrite. Int J Biol Macromol. (2005); 35(3–4): 221–5.
  • Habib, S., Moinuddin, Ali, A., Ali, R. Preferential recognition of peroxynitrite modified human DNA by circulating autoantibodies in cancer patients. Cell Immunol. (2008)
  • Wanchu, A., Khullar, M., Deodhar, S.D., Bambery, P., Sud, A. Nitric oxide synthesis is increased in patients with systemic lupus erythematosus. Rheumatol Int. (1998); 18(2): 41–3.
  • Oates, J.C., Ruiz, P., Alexander, A., Pippen, A.M., Gilkeson, G.S. Effect of late modulation of nitric oxide production on murine lupus. Clin Immunol Immunopathol. (1997); 83(1): 86–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.