287
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous detection of five biothreat agents in powder samples by a multiplexed suspension array

, , , , , , , , , , & show all
Pages 417-427 | Received 23 Oct 2008, Accepted 12 Jan 2009, Published online: 01 Apr 2009

References

  • Mothershead, J. L., Tonat, K., Koenig, K. L. Bioterrorism preparedness. III: State and federal programs and response. Emerg. Med. Clin. North Am. 2002,20,477–500.
  • Lim, D. V., Simpson, J. M., Kearns, E. A., Kramer, M. F. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin. Microbiol. Rev. 2005, 18,583–607.
  • Cirino, N. M., Musser, K. A., Egan, C. Multiplex diagnostic platforms for detection of biothreat agents. Expert Rev. Mol. Diagn. 2004,4,841–57.
  • Rotz, L. D., Hughes, J. M. Advances in detecting and responding to threats from bioterrorism and emerging infectious disease. Nat. Med. 2004,10,S130–6.
  • Balaban, N., Rasooly, A. Analytical chromatography for recovery of small amounts of staphylococcal enterotoxins from food. Int. J. Food Microbiol. 2001,64,33–40.
  • Bell, S. E., Mackle, J. N., Sirimuthu, N. M. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid—Towards rapid anthrax endospore detection. Analyst. 2005,130, 545–9.
  • Curry, A., Appleton, H., Dowsett, B. Application of transmission electron microscopy to the clinical study of viral and bacterial infections: Present and future. Micron 2006,37,91–106.
  • Elhanany, E., Barak Fisher, M., Kobiler, D., Altboum, Z. Detection of specific Bacillus anthracis spore biomarkers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1987,15,2110–6.
  • Hines, H. B., Brueggemann, E. E., Hale, M. L. High-performance liquid chromatography-mass selective detection assay for adenine released from a synthetic RNA substrate by ricin A chain. Anal Biochem 2004,330,119–22.
  • Trindade, G. S., Vilela, J. M., Ferreira, J. M. et al. Use of atomic force microscopy as a diagnostic tool to identify orthopoxvirus. J. Virol.Methods. 2007,141(2),198–204
  • Perdue, M. L. 2004. Analysis of Bacillus anthracis spores in milk using mass spectrometry. Foodborne Pathog. Dis. 2003,1,185–94.
  • Zhou, D., Han, Y., Dai, E.Pei, D. et al. Identification of signature genes for rapid and specific characterization of Yersinia pestis. Microbiol. Immunol. 2004,48,263–9.
  • Kulesh, D. A., Baker, R. O., Loveless, B. M. et al. Smallpox and pan-orthopox virus detection by real-time 3’-minor groove binder TaqMan assays on the Roche LightCycler and the Cepheid smart Cycler platforms. J. Clin. Microbiol. 2004,42,601–9.
  • Huelseweh, B., Ehricht, R., and Marschall, H. J. A simple and rapid protein array based method for the simultaneous detection of biowarfare agents. Proteomics. 2006, 6,2972–81.
  • Hong, T. C., Mai, Q. L., Cuong, D. V. et al. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 2004,42,1956–61.
  • Cheun, H. I., Makino, S. I., Watarai, M., Erdenebaatar, J. et al. Rapid and effective detection of anthrax spores in soil by PCR. J. Appl. Microbiol. 2003,95,728–33.
  • Ryu, C., Lee, K., Yoo, C. Sensitive and rapid quantitative detection of anthrax spores isolated from soil samples by real-time PCR. Microbiol. Immunol. 2003,47,693–9.
  • Versage, J. L., Severin, D. D., Chu, M. C., Petersen, J. M. Development of a multitarget real-time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. J. Clin. Microbind.2003, 41, 5492–9.
  • Fulton, R. J., McDade, R. L., Smith, P. L. et al. Advanced multiplexed analysis with the FlowMetrix system. Clin. Chem. 1997,43,1749–56.
  • Shyu, R. H., Shyu, H. F., Liu, H. W., and Tang, S. S. Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon. 2002,40,255–8.
  • Deisingh, A. K., Thompson, M. Biosensors for the detection of bacteria. Can. J. Microbiol. 2004,50,69–77.
  • Lazcka, O., Del Campo, F. J., Munoz, F. X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007,22,1205–17.
  • Pal, S., Alocilja, E. C., Downes, F. P. Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosens. Bioelectron. 2007,22(9-10),2329–36
  • Baeumner, A. J., Leonard, B., McElwee, J., Montagna, R. A. A rapid biosensor for viable B. anthracis spores. Anal. Bioanal. Chem. 2004,380,15–23.
  • Tims, T. B., Lim, D. V. Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor. J. Microbiol. Methods. 2004,59,127–30.
  • Delehanty, J. B., and Ligler, F. S. A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal. Chem. 2002,74,5681–7.
  • Taitt, C. R., Golden, J. P., Shubin, Y. S. et al. A portable array biosensor for detecting multiple analytes in complex samples. Microb. Ecol. 2004,47,175–85.
  • Yeung, S. W., Lee, T., M.Cai, H., Hsing, I. M. A DNA biochip for on-the-spot multiplexed pathogen identification. Nucleic Acids Res. 2006,34,e118.
  • Fulton, R. J., McDade, R. L., Smith, P. L. et al. Advanced multiplexed analysis with the FlowMetrix system. Clin. Chem. 1997,43,1749–56.
  • Baums, I. B., Goodwin, K. D., Kiesling, T. et al. Luminex detection of fecal indicators in river samples, marine recreational water, and beach sand. Mar. Pollut. Bull. 2007,54(5),521–36
  • Clavijo, A., Hole, K., Li, M., Collignon, B. Simultaneous detection of antibodies to foot-and-mouth disease non-structural proteins 3ABC, 3D, 3A and 3B by a multiplexed Luminex assay to differentiate infected from vaccinated cattle. Vaccine. 2006,24,1693–704.
  • Deregt, D., Gilbert, S. A., Dudas, S. et al. A multiplex DNA suspension microarray for simultaneous detection and differentiation of classical swine fever virus and other pestiviruses. J. Virol. Methods. 2006,136,17–23.
  • Diaz, M. R., Boekhout, T., Theelen, B. et al. Microcoding and flow cytometry as a high-throughput fungal identification system for Malassezia species. J. Med. Microbiol. 2006,55,1197–209.
  • Diaz, M. R., Fell, J. W. Use of a suspension array for rapid identification of the varieties and genotypes of the Cryptococcus neoformans species complex. J. Clin. Microbiol. 2005, 43,3662–72.
  • Dingman, D. W., Rosenkrantz, M. S., Sonenshein, A. L. Relationship between aconitase gene expression and sporulation in Bacillus subtilis. J. Bacteriol, 1987,169(7),3068–3075
  • Dunbar, S. A., Vander Zee, C. A., Oliver, K. G. et al. Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. J. Microbiol. Methods. 2003, 53,245–52.
  • Hindson, B. J., Brown, S. B., Marshall, G. D. et al. Development of an automated sample preparation module for environmental monitoring of biowarfare agents. Anal. Chem. 2004,76,3492–7.
  • McBride, M. T., Gammon, S., Pitesky, et al. Multiplexed liquid arrays for simultaneous detection of stimulants of biological warfare agents. Anal. Chem. 2003, 75,1924–30.
  • Pickering, J. W., Martins, T. B., Schroder, M. C., Hill. H. R. Comparison of a multiplex flow cytometric assay with enzyme-linked immunosorbent assay for quantitation of antibodies to tetanus, diphtheria, and Haemophilus influenzae Type B. Clin. Diagn. Lab. Immunol. 2002,9,872–6.
  • Tracz, D. M., Backhouse, P. G., Olson, A. B. et al. Rapid detection of Vibrio species using liquid microsphere arrays and real-time PCR targeting the ftsZ locus. J. Med. Microbiol. 2007,56,56–65.
  • Wilson, W. J., Erler, A. M., Nasarabadi, S. L. et al. A multiplexed PCR-coupled liquid bead array for the simultaneous detection of four biothreat agents. Mol. Cell Probes. 2005,19,137–44.
  • Wong, S. J., Demarest, V. L., Boyle, R. H. et al. Detection of human anti-flavivirus antibodies with a West Nile virus recombinant antigen microsphere immunoassay. J. Clin. Microbiol. 2004,42,65–72.
  • Qiu, M., Wang, J., Wang, H., Chen Z. et al. Use of the COOH portion of the nucleocapsid protein in an antigen-capturing enzyme-linked immunosorbent assay for specific and sensitive detection of severe acute respiratory syndrome coronavirus. Clin. Diagn. Lab. Immunol. 2005,12,474–6.
  • Khan, A. S., Cao, C. J., Thompson, R. G., Valdes, J. J. A simple and rapid fluorescence-based immunoassay for the detection of staphylococcal enterotoxin B. Mol. Cell Probes. 2003,17,125–6.
  • Yacoub-George, E., Hell, W., Meixner, L. et al. Automated 10-channel capillary chip immunodetector for biological agents detection. Biosens. Bioelectron. 2007,22,1368–75.
  • Stopa, P. J. 2000. The flow cytometry of Bacillus anthracis spores revisited. Cytometry. 2002,41,237–44.
  • Farrell, S., Halsall, H. B., Heineman, W. R. 2005. Immunoassay for B. globigii spores as a model for detecting B. anthracis spores in finished water. Analyst. 2001,130,489–97.
  • Shyu, R. H., Shyu, H. F., Liu, H. W., and Tang, S. S. Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon. 2002,40,255–8.
  • Zhang, X., Young, M. A.,Lyandres, O., Van Duyne, R. P., Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2005, 127,4484–9.
  • Krebs, M. D., Mansfield, B., Yip P. et al. Novel technology for rapid species-specific detection of Bacillus spores. Biomol. Eng. 2006,23,119–27.
  • Schotte, U., Langfeldt, N., Peruski, A. H., Meyer, H. Detection of staphylococcal enterotoxin B (SEB) by enzyme-linked immunosorbent assay and by a rapid hand-held assay. Clin. Lab. 2002,48,395–400.
  • Kijek, T. M., Rossi, C. A., Moss, D. et al. Rapid and sensitive immunomagnetic-electrochemiluminescent detection of staphylococcocal enterotoxin B. J. Immunol. Methods. 2000,236,9–17.
  • Hoile, R., Yuen, M., James, G., Gilbert, G. L. Evaluation of the rapid analyte measurement platform (RAMP) for the detection of Bacillus anthracis at a crime scene. Forensic Sci. Int. 2007,171(1):1–4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.