269
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Zoledronic acid, an aminobisphosphonate, modulates differentiation and maturation of human dendritic cells

, , , , &
Pages 499-508 | Received 05 Sep 2008, Accepted 11 Feb 2009, Published online: 01 Apr 2009

References

  • Rogers, M.J. New insights into the molecular mechanisms of action of bisphosphonates. Curr. Pharm. Design. 2003, 32, 2643–2658.
  • Delmas, P.D. Treatment of postmenopausal osteoporosis. Lancet 2002, 359 (9322), 2018–2026.
  • Roux, C., Dougados, M. Treatment of patients with Paget’s disease of bone. Drugs 1999, 58 (5), 823–830.
  • Coleman, R.E. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer. Treat. Rev. 2001, 27 (3), 165–176.
  • Rogers, M.J. From molds and macrophages to mevalonate: A decade of progress in understanding the molecular mode of action of bisphosphonates. Calcified. Tissue. Int. 2004, 75 (6), 451–461.
  • Dunford, J.E., Thompson, K., Coxon, F.P., Luckman, S.P., Hahn, F.M., et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J. Pharmacol. Exp. Ther. 2001, 296 (2), 235–242.
  • Amin, D., Cornell, S.A., Gustafson, S.K., Needle, S.J., Ullrich, J.W., et al. Bisphosphonates used for the treatment of bone disorders inhibit squalene synthase and cholesterol biosynthesis. J. Lipid. Res. 1992, 33 (11), 1657–1663.
  • Luckman, S.P., Hughes, D.E., Coxon, F.P., Graham, R., Russell, G., et al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J. Bone Miner. Res. 1998, 13 (4), 581–589.
  • Widler, L., Jaeggi, K.A., Glatt, M., Müller, K., Bachmann, R., et al. Highly potent geminal bisphosphonates. From pamidronate disodium (Aredia) to zoledronic acid (Zometa). J. Med. Chem. 2002, 45 (17), 3721–3738.
  • Durie, B.G., Katz, M., Crowley, J. Osteonecrosis of the jaw and bisphosphonates. New Engl. J. Med. 2005, 353 (1), 99–102.
  • Banchereau, J., Steinman, R.M. Dendritic cells and the control of immunity. Nature 1998, 392 (6673), 245–252.
  • Jonuleit, H., Kuhn, U., Muller, G., Steinbrink, K., Paragnik, L., et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol. 1997, 27(12), 3135–3142.
  • Kato, T., Yamane, H., Nariuchi, H.. Differential effects of LPS and CD40 ligand stimulations on the induction of IL-12 production by dendritic cells and macrophages. Cell Immunol. 1997, 181 (1), 59–67.
  • Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A., et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 1996, 184 (2), 747–752.
  • Labeur, M.S., Roters, B., Pers, B., Mehling, A., Luger, T.A., et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J. Immunol. 1999, 162 (1), 168–175.
  • Moreau, M.F., Guillet, C., Massin, P., Chevalier, S., Gascan, H., et al. Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem. Pharmacol. 2007, 73 (5), 718–723.
  • Dieli, F., Gebbia, N., Poccia, F., Caccamo, N., Montesano, C.,et al. Induction of gammadelta T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 2003, 102 (6), 2310–2311.
  • Fiore, F., Castella, B., Nuschak, B., Bertieri, R., Mariani, S., et al. Enhanced ability of dendritic cells to stimulate innate and adaptive immunity on short-term incubation with zoledronic acid. Blood 2007, 110 (3), 921–927.
  • Takahara, M., Miyai, M., Tomiyama, M., Mutou, M., Nicol, A.J., et al. Copulsing tumor antigen-pulsed dendritic cells with zoledronate efficiently enhance the expansion of tumor antigen-specific CD8+ T cells via Vgamma9gammadelta T cell activation. J. Leukoc. Biol. 2008, 83(3), 742–754.
  • Pedersen, A.E., Thorn, M., Gad, M., Walter, M.R., Johnsen, H.E., et al. Phenotypic and functional characterization of clinical grade dendritic cells generated from patients with advanced breast cancer for therapeutic vaccination. Scand. J. Immunol. 2005, 61 (2), 147–156.
  • Colic, M., Mojsilovic, S., Pavlovic, B., Vucićević, D., Majstorović, I., et al. Comparison of two different protocols for the induction of maturation of human dendritic cells in vitro. Vojnosanit. Pregl. 2004, 61 (5), 471–478.
  • Zhang, M., Tang, H., Guo, Z., An, H., Zhu, X., et al. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat. Immunol. 2004, 5 (11), 1124–1133.
  • Piemonti, L., Monti, P., Allavena, P., Sironi, M., Soldini, L., et al. Glucocorticoids affect human dendritic cell differentiation and maturation. J. Immunol. 1999, 162 (11), 6473–6481.
  • Lee, J.J., Liao, H.F., Yang, Y.C., Liu, C.L., Chen, Y.Y., et al. Platonin modulates differentiation and maturation of human monocyte-derived dendritic cells. Int. Immunopharmacol. 2006, 6 (2), 287–293.
  • Linsley, P.S., Brady, W., Urnes, M., Grosmaire, L.S., Damle, N.K., et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 1991a, 174 (3), 561–569.
  • Linsley, P.S., Brady, W., Grosmaire, L., Aruffo, A., Damle, N.K., et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 1991b, 173 (3), 721–730.
  • Doyle, A.M., Mullen, A.C., Villarino, A.V., Hutchins, A.S., High, F.A., et al. Induction of cytotoxic T lymphocyte antigen 4 (CTLA-4) restricts clonal expansion of helper T cells. J. Exp. Med. 2001, 194 (7), 893–902.
  • Fallarino, F., Fields, P.E., Gajewski, T.F. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J. Exp. Med. 1998, 188 (1), 205–210.
  • Sansom, D.M., Manzotti, C.N., Zheng, Y. What’s the difference between CD80 and CD86? Trends Immunol. 2003, 24 (6), 314–319.
  • Parlato, S., Santini, S.M., Lapenta, C., Di Pucchio, T., Logozzi, M., Giammarioli, A.M., Malorni, W., Fais, S., Belardelli, F. Expression of CCR-7, MIP-3beta, and Th-1 chemokines in type I IFN-induced monocyte-derived dendritic cells: importance for the rapid acquisition of potent migratory and functional activities. Blood. 2001, 15, 98 (10), 3022–3029.
  • Kellinsalmi, M., Monkkonen, H., Monkkonen, J., Leskelä, H.V., Parikka, V., et al. In vitro comparison of clodronate, pamidronate and zoledronic acid effects on rat osteoclasts and human stem cell-derived osteoblasts. Basic Clin. Pharma. Toxicol. 2005, 97 (6), 382–391.
  • Chen, T., Berenson, J., Vescio, R., Swift, R., Gilchick, A., et al. Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J. Clin. Pharmacol. 2002, 42 (11), 1228–1236.
  • Woo, S.B., Hellstein, J.W., Kalmar, J.R. Systematic review: bisphosphonates and osteonecrosis of the jaws. Ann. Intern. Med. 2006, 144 (10), 753–761.
  • Vincenzi, B., Santini, D., Dicuonzo, G., Battistoni, F., Gavasci, M., et al. Zoledronic acid-related angiogenesis modifications and survival in advanced breast cancer patients. J. Interf. Cytok. Res. 2005, 25 (3), 144–151.
  • Bringmann, A., Schmidt, S.M., Weck, M.M., Brauer, K.M., von Schwarzenberg, K., et al. Zoledronic acid inhibits the function of Toll-like receptor 4 ligand activated monocyte-derived dendritic cells. Leukemia 2007, 21 (4), 732–738.
  • Coxon, F.P., Helfrich, M.H., Van’t Hof, R., Sebti, S., Ralston, S.H., et al. Protein geranylgeranylation is required for osteoclast formation, function, and survival: Inhibition by bisphosphonates and GGTI-298. J. Bone. Miner. Res. 2000, 15 (8), 1467–1476.
  • Suri, S., Mönkkönen, J., Taskinen, M., Pesonen, J., Blank, M.A., et al. Nitrogen-containing bisphosphonates induce apoptosis of Caco-2 cells in vitro by inhibiting the mevalonate pathway: A model of bisphosphonate-induced gastrointestinal toxicity. Bone 2001, 29 (4), 336–343.
  • Coxon, J.P., Oades, G.M., Kirby, R.S., Colston, K.W. Zoledronic acid induces apoptosis and inhibits adhesion to mineralized matrix in prostate cancer cells via inhibition of protein prenylation. B.J.U. Int. 2004, 94 (1), 164–170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.