124
Views
0
CrossRef citations to date
0
Altmetric
Original Article

A novel in vivo adjuvant activity of kaempferol: enhanced Tbx-21, GATA-3 expression and peritoneal CD11c+MHCII+ dendritic cell infiltration

, , , &
Pages 242-249 | Received 03 Nov 2017, Accepted 28 Jan 2018, Published online: 28 Feb 2018

References

  • Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunology-Immunother Vac 2013;114:1–10.
  • HogenEsch H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol 2012;3:406.
  • Wen Y, Shi Y. Alum: an old dog with new tricks. Emerg Microbes Infect 2016;5:e25.
  • Apostólico JS, Lunardelli VAS, Coirada FC, et al. Adjuvants: classification, modus operandi, and licensing. J Immunol Res 2016;2016:1459394. doi:10.1155/2016/1459394
  • Chirumbolo S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm Allergy Drug Targets 2010;9:263–285.
  • Leyva-López N, Gutierrez-Grijalva EP, Ambriz-Perez DL, Heredia JB. Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases. Int J Mol Sci 2016;17:921.
  • Hämäläinen M, Nieminen R, Vuorela P, et al. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007;2007:45673. doi:10.1155/2007/45673
  • Ribeiro D, Freitas M, Lima JL, Fernandes E. Proinflammatory pathways: the modulation by flavonoids. Med Res Rev 2015;35:877–936.
  • Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 2011;11:298–344.
  • Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 2013;138:2099–2107.
  • Devi KP, Malar DS, Nabavi SF, et al. Kaempferol and inflammation: from chemistry to medicine. Pharmacol Res 2015;99:1–10.
  • Rajendran P, Rengarajan T, Nandakumar N, et al. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem 2014;86:103–112.
  • Kim SH, Choi KC. Anti-cancer effect and underlying mechanism(s) of kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol Res 2013;29:229–234.
  • Oh HA, Han NR, Kim MJ, et al. Evaluation of the effect of kaempferol in a murine allergic rhinitis model. Eur J Pharmacol 2013;718:48–56.
  • Lee HS, Cho HJ, Kwon GT, Park JH. Kaempferol downregulates insulin-like growth factor-I receptor and ErbB3 signaling in HT-29 human colon cancer cells. J Cancer Prev 2014;19:161–169.
  • Singh D, Tanwar H, Jayashankar B, et al. Quercetin exhibits adjuvant activity by enhancing Th2 immune response in ovalbumin immunized mice. Biomed Pharmacother 2017;90:354–360.
  • Jayashankar B, Mishra KP, Ganju L, Singh SB. Supercritical extract of Seabuckthorn Leaves (SCE200ET) inhibited endotoxemia by reducing inflammatory cytokines and nitric oxide synthase 2 expression. Int Immunopharmacol 2014;20:89–94.
  • Jayashankar B, Mishra KP, Kumar MSY, et al. A supercritical CO2 extract from seabuckthorn leaves inhibits pro-inflammatory mediators via inhibition of mitogen activated protein kinase p38 and transcription factor nuclear factor-κB. Int Immunopharmacol 2012;13:461–467.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–685.
  • Yoon HY, Lee EG, Lee H, et al. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs. Int J Mol Med 2013;32:971–977.
  • Lee WS, Lee EG, Sung MS, Yoo WH. Kaempferol inhibits IL-1β-stimulated, RANKL-mediated osteoclastogenesis via downregulation of MAPKs, c-Fos, and NFATc1. Inflammation 2014;37:1221–1230.
  • Tang XL, Liu JX, Dong W, et al. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation 2015;38:94–101.
  • Cao R, Fu K, Lv X, et al. Protective effects of kaempferol on lipopolysaccharide-induced mastitis in mice. Inflammation 2014;37:1453–1458.
  • Wang W, Singh M. Selection of adjuvants for enhanced vaccine potency. World J Vac 2011;1:33–78.
  • Kool M, Pétrilli V, DeSmedt T, et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 2008;181:3755–3759.
  • Kool M, Soullié T, van Nimwegen M, et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 2008;205:869–882.
  • Pan D, Li N, Liu Y, et al. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. Int Immunopharmacol 2017;55:174–182.
  • Guo H, Lin W, Zhang X, et al. Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway. Oncotarget 2017;8:82207–82216.
  • Han B, Yu YQ, Yang QL, et al. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling. Oncotarget 2017;8:86227–86239.
  • Lamkanfi M, Kanneganti TD, Franchi L, Núñez G. Caspase-1 inflammasomes in infection and inflammation. J Leukoc Biol 2007;82:220–225.
  • Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunol 2009;10:241–247.
  • Netea MG, Simon A, van de Veerdonk F, et al. IL-1β processing in host defense: beyond the inflammasomes. PLoS Pathog 2010;6:e1000661.
  • Walle LV, Lamkanfi M. Inflammasomes: caspase-1-activating platforms with critical roles in host defense. Front Microbiol 2011;2:3.
  • Zhu D, Tuo W. QS-21: a potent vaccine adjuvant. Nat Prod Chem Res 2016;3:e113.
  • Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000;100:655–669.
  • Zhou M, Ouyang W. The function role of GATA-3 in Th1 and Th2 differentiation. Immunol Res 2003;28:25–37.
  • Yagi R, Zhu J, Paul WE. An updated view on transcription factor GATA3- mediated regulation of Th1 and Th2 cell differentiation. International Immunol 2011;23:415–420.
  • Latchman DS. The Oct-2 transcription factor. Int J Biochem Cell Biol 1996;28:1081–1083.
  • Corcoran LM, Koentgen F, Dietrich W, et al. All known in vivo functions of the Oct-2 transcription factor require the C-terminal protein domain. J Immunol 2004;172:2962–2969.
  • Martins G, Calame K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol 2008;26:133–169.
  • Minnich M, Tagoh H, Bönelt P, et al. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nature Immunol 2016;7:331–343.
  • Lee J, Choi JW, Sohng JK, et al. The immunostimulating activity of quercetin 3-O-xyloside in murine macrophages via activation of the ASK1/MAPK/NF-κB signaling pathway. Int Immunopharmacol 2016;31:88–97.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.