376
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

dl-Malic acid as a component of α-hydroxy acids: effect on 2,4-dinitrochlorobenzene-induced inflammation in atopic dermatitis-like skin lesions in vitro and in vivo

, , , , &
Pages 614-621 | Received 23 May 2019, Accepted 12 Oct 2019, Published online: 24 Oct 2019

References

  • Leung DY, Bieber T. Atopic dermatitis. Lancet. 2003;361(9352):151–160.
  • Leung DY. Atopic dermatitis: new insights and opportunities for therapeutic intervention. J Allergy Clin Immunol. 2000;105(5):860–876.
  • Vakharia PP, Chopra R, Sacotte R, et al. Burden of skin pain in atopic dermatitis. Ann Allergy Asthma Immunol. 2017;119(6):548–552 e3.
  • Lim HW, Collins SAB, Resneck JS, Jr, et al. The burden of skin disease in the United States. J Am Acad Dermatol. 2017;76(5):958–972 e2.
  • Yu SH, Attarian H, Zee P, et al. Burden of sleep and fatigue in US adults with atopic dermatitis. Dermatitis. 2016;27(2):50–58.
  • Picardi A, Lega I, Tarolla E. Suicide risk in skin disorders. Clin Dermatol. 2013;31(1):47–56.
  • Leung DY. Atopic dermatitis: immunobiology and treatment with immune modulators. Clin Exp Immunol. 1997; 107(Suppl 1):25–30.
  • Bieber T. Atopic dermatitis. N Engl J Med. 2008;358(14):1483–1494.
  • Marsella R, Olivry T, Carlotti DN, et al. Current evidence of skin barrier dysfunction in human and canine atopic dermatitis. Vet Dermatol. 2011;22(3):239–248.
  • Soter NA. Morphology of atopic eczema. Allergy. 1989;44(s9):16–19.
  • Moghadam-Kia S, Werth VP. Prevention and treatment of systemic glucocorticoid side effects. Int J Dermatol. 2010;49(3):239–248.
  • Sohn EH, Jang SA, Lee CH, et al. Effects of Korean red ginseng extract for the treatment of atopic dermatitis-like skin lesions in mice. J Ginseng Res. 2011;35(4):479–486.
  • Park HS, Hwang YH, Kim MK, et al. Functional polysaccharides from Grifola frondosa aqueous extract inhibit atopic dermatitis-like skin lesions in NC/Nga mice. Biosci Biotechnol Biochem. 2015;79(1):147–154.
  • Saeki H, Nakahara T, Tanaka A, et al. Clinical practice guidelines for the management of atopic dermatitis 2016. J Dermatol. 2016;43(10):1117–1145.
  • Knuf C, Nookaew I, Remmers I, et al. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68. Appl Microbiol Biotechnol. 2014;98(8):3517–3527.
  • Qi Zhang YY, Cheng L, Cao C, et al. Thermodynamic models for determination of the solubility of dl-malic acid in methanol plus (acetonitrile, N,N-dimethylformamide, isopropyl alcohol) binary solvent mixtures. J Chem Thermodyn. 2015;85:148–154.
  • Moon SY, Hong SH, Kim TY, et al. Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J. 2008;40(2):312–320.
  • Beruter J. Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. J Plant Physiol. 2004;161(9):1011–1029.
  • Di Vaio C, Marallo N, Graziani G, et al. Evaluation of fruit quality, bioactive compounds and total antioxidant activity of flat peach cultivars. J Sci Food Agric. 2015;95(10):2124–2131.
  • Wu J, Peng W, Qin R, et al. Crataegus pinnatifida: chemical constituents, pharmacology, and potential applications. Molecules. 2014;19(2):1685–1712.
  • Seymour Jet GB, Tucker GA, editors. Biochemistry of fruit ripening. Vol. 4. London: Chapman & Hall; 1993.
  • Van Scott EJ, Ditre CM, Yu RJ. Alpha-hydroxyacids in the treatment of signs of photoaging. Clin Dermatol. 1996;14(2):217–226.
  • Kim TH, Choi EH, Kang YC, et al. The effects of topical alpha-hydroxyacids on the normal skin barrier of hairless mice. Br J Dermatol. 2001;144(2):267–273.
  • Israel Goldberg RAW, Williams R. Biotechnology and food ingredients. Vol. 1. New York: van Nostrand Reinhold; 1991.
  • Zhang QC, Zhao Y, Bian HM. Antiplatelet activity of a novel formula composed of malic acid, succinic acid and citric acid from Cornus officinalis fruit. Phytother Res. 2013;27(12):1894–1896.
  • Findlay GH. Succinic dehydrogenase in human epidermis. Br J Dermatol. 1965;77(2):88–91.
  • Inoue H, Someno T, Kawada M, et al. Citric acid inhibits a bacterial ceramidase and alleviates atopic dermatitis in an animal model. J Antibiot. 2010;63(10):611–613.
  • Tokudome Y. Influence of oral administration of lactic acid bacteria metabolites on skin barrier function and water content in a murine model of atopic dermatitis. Nutrients. 2018;10(12):1858.
  • Horikawa T, Nakayama T, Hikita I, et al. IFN-gamma-inducible expression of thymus and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in epidermal keratinocytes and their roles in atopic dermatitis. Int Immunol. 2002;14(7):767–773.
  • Brenninkmeijer EE, Schram ME, Leeflang MM, et al. Diagnostic criteria for atopic dermatitis: a systematic review. Br J Dermatol. 2008;158(4):754–765.
  • Mittermann I, Wikberg G, Johansson C, et al. IgE sensitization profiles differ between adult patients with severe and moderate atopic dermatitis. PLoS One. 2016;11(5):e0156077.
  • Church MK, Levi-Schaffer F. The human mast cell. J Allergy Clin Immunol. 1997;99(2):155–160.
  • May LT, Helfgott DC, Sehgal PB. Anti-beta-interferon antibodies inhibit the increased expression of HLA-B7 mRNA in tumor necrosis factor-treated human fibroblasts: structural studies of the beta 2 interferon involved. Proc Natl Acad Sci USA. 1986;83(23):8957–8961.
  • Gauldie J, Richards C, Harnish D, et al. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci USA. 1987;84(20):7251–7255.
  • Lotz M, Jirik F, Kabouridis P, et al. B cell stimulating factor 2/interleukin 6 is a costimulant for human thymocytes and T lymphocytes. J Exp Med. 1988;167(3):1253–1258.
  • Garman RD, Jacobs KA, Clark SC, et al. B-cell-stimulatory factor 2 (beta 2 interferon) functions as a second signal for interleukin 2 production by mature murine T cells. Proc Natl Acad Sci USA. 1987;84(21):7629–7633.
  • Kirnbauer R, Kock A, Schwarz T, et al. IFN-beta 2, B cell differentiation factor 2, or hybridoma growth factor (IL-6) is expressed and released by human epidermal cells and epidermoid carcinoma cell lines. J Immunol. 1989;142(6):1922–1928.
  • Liu FT, Goodarzi H, Chen HY. IgE, mast cells, and eosinophils in atopic dermatitis. Clinic Rev Allerg Immunol. 2011;41(3):298–310.
  • Wessler I, Reinheimer T, Kilbinger H, et al. Increased acetylcholine levels in skin biopsies of patients with atopic dermatitis. Life Sci. 2003;72(18/19):2169–2172.
  • Irani AM, Sampson HA, Schwartz LB. Mast cells in atopic dermatitis. Allergy. 1989;44(s9):31–34.
  • Leiferman KM, Ackerman SJ, Sampson HA, et al. Dermal deposition of eosinophil-granule major basic protein in atopic dermatitis. Comparison with onchocerciasis. N Engl J Med. 1985;313(5):282–285.
  • Bochner BS, Luscinskas FW, Gimbrone MA, Jr, et al. Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J Exp Med. 1991;173(6):1553–1557.
  • Gudbjornsson B, Hallgren R, Nettelbladt O, et al. Phenotypic and functional activation of alveolar macrophages, T lymphocytes and NK cells in patients with systemic sclerosis and primary Sjogren’s syndrome. Ann Rheum Dis. 1994;53(9):574–579.
  • Staumont-Salle D, Fleury S, Lazzari A, et al. CX(3)CL1 (fractalkine) and its receptor CX(3)CR1 regulate atopic dermatitis by controlling effector T cell retention in inflamed skin. J Exp Med. 2014;211(6):1185–1196.
  • Hirata H, Arima M, Cheng G, et al. Production of TARC and MDC by naive T cells in asthmatic patients. J Clin Immunol. 2003;23(1):34–45.
  • Vestergaard C, Deleuran M, Gesser B, et al. Thymus- and activation-regulated chemokine (TARC/CCL17) induces a Th2-dominated inflammatory reaction on intradermal injection in mice. Exp Dermatol. 2004;13(4):265–271.
  • Campbell JJ, Haraldsen G, Pan J, et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature. 1999;400(6746):776–780.
  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83.
  • Thiel G, Ekici M, Rossler OG. Regulation of cellular proliferation, differentiation and cell death by activated Raf. Cell Commun Signal. 2009;7(1):8.
  • Tournier C, Whitmarsh AJ, Cavanagh J, et al. The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinases. Mol Cell Biol. 1999;19(2):1569–1581.
  • Azzolina A, Guarneri P, Lampiasi N. Involvement of p38 and JNK MAPKs pathways in substance P-induced production of TNF-alpha by peritoneal mast cells. Cytokine. 2002;18(2):72–80.
  • Werle M, Schmal U, Hanna K, et al. MCP-1 induces activation of MAP-kinases ERK, JNK and p38 MAPK in human endothelial cells. Cardiovasc Res. 2002;56(2):284–292.
  • Werle M, Schmal U, Hanna K, et al. MCP-1 induces activation of MAP-kinases ERK, JNK and p38 MAPK in human endothelial cells. Cardiovasc Res. 2002;56(2):284–292.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.