1,415
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Protective effect of myricetin, apigenin, and hesperidin pretreatments on cyclophosphamide-induced immunosuppression

ORCID Icon, , , , , ORCID Icon, , , , , , & show all
Pages 353-369 | Received 11 Aug 2020, Accepted 04 Apr 2021, Published online: 27 Apr 2021

References

  • Wang Q, Ju X, Wang J, et al. Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies. Cancer Lett. 2018;438:17–23.
  • Saccà SC, Cutolo CA, Ferrari D, et al. The eye, oxidative damage and polyunsaturated fatty acids. Nutrients. 2018;10(6):668.
  • Neha K, Haider MR, Pathak A, et al. Medicinal prospects of antioxidants: a review. Eur J Med Chem. 2019;178:687–704.
  • Kikuchi H, Yuan B, Hu X, et al. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am J Cancer Res. 2019;9:1517–1535.
  • Ishwarya M, Narendhirakannan RT. 3,4 Dihydroxycinnamic acid stimulates immune system function by modifying the humoral antibody response – an in vivo study. Cell Immunol. 2017;314:10–17.
  • Avci H, Epikmen ET, Ipek E, et al. Protective effects of silymarin and curcumin on cyclophosphamide-induced cardiotoxicity. Exp Toxicol Pathol. 2017;69(5):317–327.
  • Ganeshpurkar A, Saluja AK. Protective effect of catechin on humoral and cell mediated immunity in rat model. Int Immunopharmacol. 2018;54:261–266.
  • Wang ZH, Ah KK, Zhang R, et al. Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action. Environ Toxicol Pharmacol. 2010;29(1):12–18.
  • Semwal DK, Semwal RB, Combrinck S, et al. Myricetin: a dietary molecule with diverse biological activities. Nutrients. 2016;8(2):90.
  • Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of apigenin. Int J Mol Sci. 2019;20(6):1305.
  • Tang D, Chen K, Huang L, et al. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin Drug Metab Toxicol. 2017;13(3):323–330.
  • Li C, Schluesener H. Health-promoting effects of the citrus flavanone hesperidin. Crit Rev Food Sci Nutr. 2017;57(3):613–631.
  • Tejada S, Pinya S, Martorell M, et al. Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr Med Chem. 2019;25(37):4929–4945.
  • OECD 423. OECD guidelines for the testing of chemicals. Acute oral toxicity-acute toxic class method. Paris, France: Organisation for Economic Cooperation and Development; 2001.
  • Puri A, Saxena R, Saxena RP, et al. Immunostimulant activity of Nyctanthes arbor-tristis L. J Ethnopharmacol. 1994;42(1):31–37.
  • Simpson MA, Gozzo JJ. Spectrophotometric determination of lymphocyte mediated sheep red blood cell hemolysis in vitro. J Immunol Methods. 1978;21(1–2):159–165.
  • Liu LN, Guo ZW, Zhang Y, et al. Polysaccharide extracted from Rheum tanguticum prevents irradiation-induced immune damage in mice. Asian Pac J Cancer Prev. 2012;13(4):1401–1405.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.
  • Yuan H, Song J, Li X, et al. Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides. Cancer Lett. 2006;243(2):228–234.
  • Lee J, Choi JW, Sohng JK, et al. The immunostimulating activity of quercetin 3-O-xyloside in murine macrophages via activation of the ASK1/MAPK/NF-κB signaling pathway. Int Immunopharmacol. 2016;31:88–97.
  • Natarajan K, Abraham P, Kota R, et al. NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem Toxicol. 2018;118:766–783.
  • Cha MH, Nam TS, Kwak Y, et al. Changes in cytokine expression after electroacupuncture in neuropathic rats. Evid Based Complement Alternat Med. 2012;2012:1–6.
  • Rego AC, Vesce S, Nicholls DG. The mechanism of mitochondrial membrane potential retention following release of cytochrome c in apoptotic GT1-7 neural cells. Cell Death Differ. 2001;8(10):995–1003.
  • Yagi K. Simple procedure for specific enzyme of lipid hydroperoxides in serum or plasma. Methods Mol Biol. 1998;108:107–110.
  • Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–888.
  • Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34(3):497–500.
  • Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Suvarna SK, Layton C, Bancroft JD. Bancroft's theory and practice of histological techniques. 7th ed. England: Churchill Livingstone Elsevier; 2013.
  • Travlos GS. Normal structure, function, and histology of the bone marrow. Toxicol Pathol. 2006;34(5):548–565.
  • Zheng Y, Zong ZM, Chen SL, et al. Ameliorative effect of Trametes orientalis polysaccharide against immunosuppression and oxidative stress in cyclophosphamide-treated mice. Int J Biol Macromol. 2017;95:1216–1222.
  • Gong Y, Wu J, Li ST. Immuno-enhancement effects of Lycium ruthenicum Murr. polysaccharide on cyclophosphamide-induced immunosuppression in mice. Int J Clin Exp Med. 2015;8:20631–20637.
  • Liu N, Dong Z, Zhu X, et al. Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. Int J Biol Macromol. 2018;107:796–802.
  • Saxena M, Saxena J, Nema R, et al. Phytochemistry of medicinal plants. J Pharmacogn Phytochem. 2013;1:168–182.
  • Lindqvist C, Bobrowska-Hägerstrand M, Mrówczyńska L, et al. Potentiation of natural killer cell activity with myricetin. Anticancer Res. 2014;34:3975–3979.
  • Anjum V, Arora P, Ansari SH, et al. Antithrombocytopenic and immunomodulatory potential of metabolically characterized aqueous extract of Carica papaya leaves. Pharm Biol. 2017;55(1):2043–2056.
  • Yan X, Qi M, Li P, et al. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci. 2017;7(1):50.
  • Aggarwal V, Tuli HS, Thakral F, et al. Molecular mechanisms of action of hesperidin in cancer: recent trends and advancements. Exp Biol Med (Maywood). 2020;245(5):486–497.
  • Ruiz-Iglesias P, Estruel-Amades S, Camps-Bossacoma M, et al. Influence of hesperidin on systemic immunity of rats following an intensive training and exhausting exercise. Nutrients. 2020;12(5):1291.
  • Hassan SM, Khalaf MM, Sadek SA, et al. Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. Pharm Biol. 2017;55(1):766–774.
  • Korga A, Ostrowska M, Jozefczyk A, et al. Apigenin and hesperidin augment the toxic effect of doxorubicin against HepG2 cells. BMC Pharmacol Toxicol. 2019;20(1):22.
  • Lai Y, Xi Y, Shao M, et al. Myricetin reduces the reproductive toxicity of cyclophosphamide in male mice. Wei Sheng Yan Jiu. 2020;49:790–794.
  • Suleyman H, Gul HI, Asoglu M. Anti-inflammatory activity of 3-benzoyl-1-methyl-4-phenyl-4-piperidinol hydrochloride. Pharmacol Res. 2003;47(6):471–475.
  • Shukla SH, Saluja AK, Pandya SS. Modulating effect of Gmelina arborea Linn. on immunosuppressed albino rats. Phcog Res. 2010;2(6):359–363.
  • Ghassemi-Rad J, Maleki M, Knickle AF, et al. Myricetin-induced oxidative stress suppresses murine T lymphocyte activation. Cell Biol Int. 2018;42(8):1069–1075.
  • Lee SJ, Choi JH, Son KH, et al. Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids. Life Sci. 1995;57(6):551–558.
  • Verbeek R, Plomp AC, van Tol EA, et al. The flavones luteolin and apigenin inhibit in vitro antigen-specific proliferation and interferon-gamma production by murine and human autoimmune T cells. Biochem Pharmacol. 2004;68(4):621–629.
  • Kim HP. Inhibition of T-cell-dependent antibody production by quercetin in mice. Biomol Ther. 2009;17(1):43–46.
  • Rasheed HMF, Rasheed F, Qureshi AW, et al. Immunostimulant activities of the aqueous methanolic extract of Leptadenia pyrotechnica, a plant from Cholistan desert. J Ethnopharmacol. 2016;186:244–250.
  • Aderem A. Phagocytosis and the inflammatory response. J Infect Dis. 2003;187(s2):S340–S345.
  • Ginwala R, Bhavsar R, Chigbu DI, et al. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants (Basel). 2019;8(2):35.
  • Fan Y, Lu Y, Wang D, et al. Effect of epimedium polysaccharide-propolis flavone immunopotentiator on immunosuppression induced by cyclophosphamide in chickens. Cell Immunol. 2013;281(1):37–43.
  • Ruela-de-Sousa RR, Fuhler GM, Blom N, et al. Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death Dis. 2010;1(1):e19–e19.
  • Ustunsoy S, Akal ZU, Alpsoy L. Protective role of gossypetin against cyclophosphamide toxicity in human lymphocyte culture in vitro. Med Chem. 2016;6:88–92.
  • Ren Z, He C, Fan Y, et al. Immuno-enhancement effects of ethanol extract from Cyrtomium macrophyllum (Makino) Tagawa on cyclophosphamide-induced immunosuppression in BALB/c mice. J Ethnopharmacol. 2014;155(1):769–775.
  • Culley FJ. Natural killer cells in infection and inflammation of the lung. Immunology. 2009;128(2):151–163.
  • Wang Y, Qi Q, Li A, et al. Immuno-enhancement effects of Yifei Tongluo Granules on cyclophosphamide-induced immunosuppression in Balb/c mice. J Ethnopharmacol. 2016;194:72–82.
  • Dokur M, Chen CP, Advis JP, et al. Beta-endorphin modulation of interferon-gamma, perforin and granzyme B levels in splenic NK cells: effects of ethanol. J Neuroimmunol. 2005;166(1–2):29–38.
  • Yu Q, Nie SP, Wang JQ, et al. Chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced mice. Int J Biol Macromol. 2014;64:395–401.
  • Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–1616.
  • Dantas AC, Batista-Júnior FF, Macedo LF, et al. Protective effect of simvastatin in the cyclophosphamide-induced hemorrhagic cystitis in rats. Acta Cir Bras. 2010;25(1):43–46.
  • Hutter D, Greene JJ. Influence of the cellular redox state on NF-kappaB-regulated gene expression. J Cell Physiol. 2000;183(1):45–52.
  • King PD, Perry MC. Hepatotoxicity of chemotherapy. Oncologist. 2001;6(2):162–176.
  • Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.
  • Pratheeshkumar P, Kuttan G. Cardiospermum halicacabum inhibits cyclophosphamide induced immunosupression and oxidative stress in mice and also regulates iNOS and COX-2 gene expression in LPS stimulated macrophages. Asian Pac J Cancer Prev. 2010;11:1245–1252.
  • Masella R, Di Benedetto R, Varì R, et al. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem. 2005;16(10):577–586.
  • Olayinka ET, Ore A, Ola OS, et al. Ameliorative effect of gallic acid on cyclophosphamide-induced oxidative injury and hepatic dysfunction in rats. Med Sci. 2015;3:78–92.
  • Zhai J, Zhang F, Gao S, et al. Schisandra chinensis extract decreases chloroacetaldehyde production in rats and attenuates cyclophosphamide toxicity in liver, kidney and brain. J Ethnopharmacol. 2018;210:223–231.
  • Shokrzadeh M, Ahmadi A, Chabra A, et al. An ethanol extract of Origanum vulgare attenuates cyclophosphamide-induced pulmonary injury and oxidative lung damage in mice. Pharm Biol. 2014;52(10):1229–1236.
  • Senthilkumar S, Devaki T, Manohar BM, et al. Effect of squalene on cyclophosphamide-induced toxicity. Clin Chim Acta. 2006;364(1–2):335–342.
  • El-Naggar SA, Alm-Eldeen AA, Germoush MO, et al. Ameliorative effect of propolis against cyclophosphamide-induced toxicity in mice. Pharm Biol. 2015;53(2):235–241.
  • Moraes JP, Pereira DS, Matos AS, et al. The ethanol extract of the inner bark of Caesalpinia pyramidalis (Tul.) reduces urinary bladder damage during cyclophosphamide-induced cystitis in rats. ScientificWorldJournal. 2013;2013:1–8.
  • Han J, Xia J, Zhang L, et al. Studies of the effects and mechanisms of ginsenoside Re and Rk3 on myelosuppression induced by cyclophosphamide. J Ginseng Res. 2019;43(4):618–624.
  • Lee HR, Yoo N, Jeong J, et al. PLAG alleviates chemotherapy-induced thrombocytopenia via promotion of megakaryocyte/erythrocyte progenitor differentiation in mice. Thromb Res. 2018;161:84–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.