220
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Effects of nanocurcumin supplementation on T‐helper 17 cells inflammatory response in patients with Behcet’s disease: a randomized controlled trial

, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 206-215 | Received 25 Oct 2021, Accepted 01 Jan 2022, Published online: 12 Jan 2022

References

  • Alpsoy E. Behçet's disease: a comprehensive review with a focus on epidemiology, etiology and clinical features, and management of mucocutaneous lesions. J Dermatol. 2016;43(6):620–632.
  • Yazici H. The lumps and bumps of Behcet’s syndrome. Autoimmun Rev. 2004;3(supplement 1):S53–S54.
  • Wang HH, Dai YQ, Qiu W, et al. Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse. J Clin Neurosci. 2011;18(10):1313–1317.
  • Lai NS, Yu HC, Chen HC, et al. Aberrant expression of microRNAs in T cells from patients with ankylosing spondylitis contributes to the immunopathogenesis. Clin Exp Immunol. 2013;173(1):47–57.
  • Brand S. Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut. 2009;58(8):1152–1167.
  • Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763–776.
  • Hamburg JP, Tas SW. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun. 2018;87:69–81.
  • Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol. 2008;8(5):337–348.
  • Hamzaoui K. Th17 cells in Behcet’s disease: a new immunoregulatory axis. Clin Exp Rheum. 2011;29(4 supplement 67):S71–S76.
  • Hamzaoui K, Bouali E, Ghorbel I, et al. Expression of Th-17 and RORγt mRNA in Behçet's Disease. Med Sci Monit. 2011;17(4):CR227–CR234.
  • Sugita S, Kawazoe Y, Imai A, et al. Inhibition of Th17 differentiation by anti-TNF-alpha therapy in uveitis patients with Behçet's disease . Arthritis Res Ther. 2012;14(3):R99.
  • Geri G, Terrier B, Rosenzwajg M, et al. Critical role of IL-21 in modulating TH17 and regulatory T cells in Behçet disease. J Allergy Clin Immunol. 2011;128(3):655–664.
  • Chi W, Yang P, Zhu X, et al. Production of interleukin-17 in behcet’s disease is inhibited by cyclosporin A. Mol Vis. 2010;16:880–886.
  • Chi W, Zhu X, Yang P, et al. Upregulated IL-23 and IL-17 in Behçet patients with active uveitis. Invest Ophthalmol Vis Sci. 2008;49(7):3058–3064.
  • Kuwabara T, Ishikawa F, Kondo M, et al. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm. 2017;2017:3908061.
  • Qu N, Xu M, Mizoguchi I, et al. Pivotal roles of T-helper 17-related cytokines, IL-17, IL-22, and IL-23, in inflammatory diseases. Clin Dev Immunol. 2013;2013:968549.
  • Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–240.
  • Hosseini A, Dolati S, Hashemi V, et al. Regulatory T and T helper 17 cells: their roles in preeclampsia. J Cell Physiol. 2018;233(9):6561–6573.
  • Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–1133.
  • Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol. 2016;16(5):279–294.
  • Qu Z, Li W, Fu B. MicroRNAs in autoimmune diseases. Biomed Res Int. 2014;2014:527895.
  • Atabaki M, Shariati-Sarabi Z, Barati M, et al. MicroRNAs as the important regulators of T helper 17 cells: a narrative review. Iran J Allergy Asthma Immunol. 2020;19(6):589–601.
  • Na S, Park MJ, Park S, et al. MicroRNA-155 regulates the Th17 immune response by targeting ets-1 in behcet’s disease. Clin Exp Rheumatol. 2016;34(6 Suppl 102):S56–S63.
  • Kolahi S, Farajzadeh MJ, Alipour S, et al. Determination of mir-155 and mir-146a expression rates and its association with expression level of TNF-α and CTLA4 genes in patients with Behcet's disease . Immunol Lett. 2018;204:55–59.
  • El Boghdady NA, Shaker OG. Role of serum miR-181b, proinflammatory cytokine, and adhesion molecules in Behçet's disease. J Interferon Cytokine Res. 2019;39(6):347–354.
  • Jadideslam G, Ansarin K, Sakhinia E, et al. Expression levels of miR-21, miR-146b and miR-326 as potential biomarkers in Behcet's disease. Biomark Med. 2019;13(16):1339–1348.
  • Taylor J, Glenny AM, Walsh T, et al. Interventions for the management of oral ulcers in Behcet's disease. Cochrane Database Syst Rev. 2014;9:CD011018.
  • Gul A. Pathogenesis of Behcet's disease: autoinflammatory features and beyond. Semin Immunopathol. 2015;37(4):413–418.
  • Kaklamani VG, Kaklamanis PG. Treatment of Behçet's disease-an update. Semin Arthritis Rheum. 2001;30(5):299–312.
  • Gautam SC, Gao X, Dulchavsky S. Immunomodulation by curcumin. Adv Exp Med Biol. 2007;595:321–341.
  • Yang M, Akbar U, Mohan C. Curcumin in autoimmune and rheumatic diseases. Nutrients. 2019;11(5):1004.
  • Bright JJ. Curcumin and autoimmune disease. Adv Exp Med Biol. 2007;595:425–451.
  • Handono K, Pratama MZ, Endharti AT, et al. Treatment of low doses curcumin could modulate Th17/Treg balance specifically on CD4+ T cell cultures of systemic lupus erythematosus patients . Cent Eur J Immunol. 2015;40(4):461–469.
  • Hajialilo M, Dolati S, Abdolmohammadi‐Vahid S, et al. Nanocurcumin: a novel strategy in treating ankylosing spondylitis by modulating Th17 cells frequency and function. J Cell Biochem. 2019;120(7):12027–12012.
  • Ahmadi M, Hajialilo M, Dolati S, et al. The effects of nanocurcumin on treg cell responses and treatment of ankylosing spondylitis patients: a randomized, double-blind, placebo-controlled clinical trial. J Cell Biochem. 2020;121(1):103–110.
  • Palizgir MT, Akhtari M, Mahmoudi M, et al. Curcumin reduces the expression of interleukin 1β and the production of interleukin 6 and tumor necrosis factor alpha by M1 macrophages from patients with behcet's disease. Immunopharmacol Immunotoxicol. 2018;40(4):297–302.
  • Abbasian S, Soltani-Zangbar MS, Khabbazi A, et al. Nanocurcumin supplementation ameliorates Behcet’s disease by modulating regulatory T cells: a randomized, double-blind, placebocontrolled trial. Int Immunopharmacol. 2021;101:108237.
  • International team for the revision of the international criteria for Behcet’s disease. Revision of the international criteria for Behcet’s disease (ICBD). Clin Exp Rheumatol. 2006;24(Suppl42):S14–S15.
  • Davatchi F, Schirmer M, Zouboulis C, on behalf International Team for the Revision of the International Criteria for Behcet’s Disease, et al. “Evaluation and Revision of the International Study Group Criteria for Behçet’s Disease”. In: Proceedings of the American College of Rheumatology Meeting, 2007. Boston, Mass, USA. Abstract 1233.
  • Davatchi F, Akbarian M, Shahram F, et al. Iran Behcet’s disease dynamic activity measure. Abstracts of the XIIth European congress of rheumatology. Hungarian Rheumatol. 1991;32:134. abstract FP10–100).
  • Shahram F, Khabbazi A, Nadji A, et al. Comparison of existing disease activity indices in the follow-up of patients with Behcet’s disease. Mod Rheumatol. 2009;19(5):536–541.
  • Ahmadi M, Yousefi M, Abbaspour-Aghdam S, et al. Disturbed Th17/treg balance, cytokines, and miRNAs in peripheral blood of patients with Behcet's disease. J Cell Physiol. 2019;234(4):3985–3994.
  • Aktas Cetin E, Cosan F, Cefle A, et al. IL-22-secreting Th22 and IFN-γ-secreting Th17 cells in Behçet's disease. Mod Rheumatol. 2014;24(5):802–807.
  • Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med. 2007;13(2):139–145.
  • Golombick T, Diamond TH, Manoharan A, et al. B-cell disorders and curcumin. Integr Cancer Ther. 2017;16(3):255–257.
  • Wang J, Kang YX, Pan W, et al. Enhancement of anti-inflammatory activity of curcumin using phosphatidylserine-containing nanoparticles in cultured macrophages. IJMS. 2016;17(6):969.
  • Fiala M. Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: benefits of omega-3 with curcumin against cancer. Molecules. 2015;20(2):3020–3026.
  • Lv J, Shao Q, Wang H, et al. Effects and mechanisms of curcumin and basil polysaccharide on the invasion of SKOV3 cells and dendritic cells. Mol Med Rep. 2013;8(5):1580–1586.
  • Ma C, Ma Z, Fu Q, et al. Curcumin attenuates allergic airway inflammation by regulation of CD4 + CD25+ regulatory T cells (tregs)/Th17 balance in ovalbumin-sensitized mice. Fitoterapia. 2013;87:57–64.
  • Zhao G, Liu Y, Yi X, et al. Curcumin inhibiting Th17 cell differentiation by regulating the metabotropic glutamate receptor-4 expression on dendritic cells. Int Immunopharmacol. 2017;46:80–86.
  • Park MJ, Moon SJ, Lee SH, et al. Curcumin attenuates acute graft-versus-host disease severity via in vivo regulations on Th1, Th17 and regulatory T cells. PLoS One. 2013;8(6):e67171.
  • Kalim H, Handono K, Khalasha T, et al. Immune modulation effects of curcumin in pristane-induced lupus mice. Indian J Rheumatol. 2017;12(2):86–93.
  • Xie L, Li XK, Funeshima-Fuji N, et al. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol. 2009;9(5):575–581.
  • Bakır B, Yetkin Ay Z, Büyükbayram Hİ, et al. Effect of curcumin on systemic T helper 17 cell response; gingival expressions of interleukin-17 and retinoic acid Receptor-Related orphan receptor γt; and alveolar bone loss in experimental periodontitis. J Periodontol. 2016;87(11):e183–e191.
  • Dolati S, Aghebati-Maleki L, Ahmadi M, et al. Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. J Cell Physiol. 2018;233(7):5222–5230.
  • Dolati S, Ahmadi M, Rikhtegar R, et al. Changes in Th17 cells function after nanocurcumin use to treat multiple sclerosis. Int Immunopharmacol. 2018;61:74–81.
  • Hong J, Bose M, Ju J, et al. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis. 2004;25(9):1671–1679.
  • Jagetia GC, Aggarwal BB. "Spicing up" of the immune system by curcumin. J Clin Immunol. 2007;27(1):19–35.
  • Srivastava RM, Singh S, Dubey SK, et al. Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol. 2011;11(3):331–341.
  • Antiga E, Bonciolini V, Volpi W, et al. Oral curcumin (meriva) is effective as an adjuvant treatment and is able to reduce IL-22 serum levels in patients with psoriasis vulgaris. Biomed Res Int. 2015;2015:1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.