174
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

CCCTC-binding factor-mediated microRNA-340-5p suppression aggravates myocardial injury in rats with severe acute pancreatitis through activation of the HMGB1/TLR4 axis

, , , , , , & ORCID Icon show all
Pages 306-315 | Received 29 Jul 2021, Accepted 13 Feb 2022, Published online: 03 Mar 2022

References

  • Munhoz-Filho CH, Batigália F, Funes HLX. Clinical and therapeutic correlations in patients with slight acute pancreatitis. Arq Bras Cir Dig. 2015;28(1):24–27.
  • Whitcomb DC. Genetic risk factors for pancreatic disorders. Gastroenterology. 2013;144(6):1292–1302.
  • Portelli M, Jones CD. Severe acute pancreatitis: pathogenesis, diagnosis and surgical management. Hepatobiliary Pancreat Dis Int. 2017;16(2):155–159.
  • van Baal MC, van Santvoort HC, Bollen TL, Dutch Pancreatitis Study Group, et al. Systematic review of percutaneous catheter drainage as primary treatment for necrotizing pancreatitis. Br J Surg. 2011;98(1):18–27.
  • Pal KM, Kasi PM, Tayyeb M, et al. Correlates of morbidity and mortality in severe necrotizing pancreatitis. ISRN Surg. 2012;2012:215193.
  • Papachristou GI. Prediction of severe acute pancreatitis: current knowledge and novel insights. World J Gastroenterol. 2008; 14(41):6273–6275.
  • Calleja GA, Barkin JS. Acute pancreatitis. Med Clin North Am. 1993;77(5):1037–1056.
  • Pedersen SB, Langsted A, Nordestgaard BG. Nonfasting mild-to-Moderate hypertriglyceridemia and risk of acute pancreatitis. JAMA Intern Med. 2016;176(12):1834–1842.
  • Chang X, Lochner A, Wang HH, et al. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics. 2021;11(14):6766–6785.
  • Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury. Acta Pharm Sin B. 2020;10(10):1866–1879.
  • Zhou H, Ren J, Toan S, et al. Role of mitochondrial quality surveillance in myocardial infarction: from bench to bedside. Ageing Res Rev. 2021;66:101250
  • Zhu H, Tan Y, Du W, et al. Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control. Redox Biol. 2021;38:101777
  • Zhu H, Toan S, Mui D, et al. Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiol (Oxf). 2021;231(3):e13590.
  • Li L, Li YQ, Sun ZW, et al. Qingyi decoction protects against myocardial injuries induced by severe acute pancreatitis. WJG. 2020;26(12):1317–1328.
  • Saulea A, Costin S, Rotari V. Heart ultrastructure in experimental acute pancreatitis. Rom J Physiol. 1997;34(1-4):35–44.
  • Yegneswaran B, Kostis JB, Pitchumoni CS. Cardiovascular manifestations of acute pancreatitis. J Crit Care. 2011;26(2):225 e11–8.
  • Prasada R, Dhaka N, Bahl A, et al. Prevalence of cardiovascular dysfunction and its association with outcome in patients with acute pancreatitis. Indian J Gastroenterol. 2018;37(2):113–119.
  • Wen Y, Sun HY, Tan Z, et al. Abdominal paracentesis drainage ameliorates myocardial injury in severe experimental pancreatitis rats through suppressing oxidative stress. World J Gastroenterol. 2020;26(1):35–54.
  • Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta. 2010;1799(1-2):149–156.
  • Ni SY, Zhong XL, Li ZH, et al. Puerarin alleviates lipopolysaccharide-induced myocardial fibrosis by inhibiting PARP-1 to prevent HMGB1-mediated TLR4-NF-κB signaling pathway. Cardiovasc Toxicol. 2020;20(5):482–491. Oct
  • Yuan Y, Li B, Peng W, et al. Protective effect of glycyrrhizin on coronary microembolization-induced myocardial dysfunction in rats. Pharmacol Res Perspect. 2021 Feb;9(1):e00714.
  • Lee TJ, Yuan X, Kerr K, et al. Strategies to modulate MicroRNA functions for the treatment of cancer or organ injury. Pharmacol Rev. 2020;72(3):639–667.
  • Li D, Zhou J, Yang B, et al. microRNA-340-5p inhibits hypoxia/reoxygenation-induced apoptosis and oxidative stress in cardiomyocytes by regulating the Act1/NF-κB pathway. J Cell Biochem. 2019;120(9):14618–14627.
  • Baniahmad A, Steiner C, Kohne AC, et al. Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell. 1990;61(3):505–514.
  • Kohne AC, Baniahmad A, Renkawitz R. NeP1. A ubiquitous transcription factor synergizes with v-ERBA in transcriptional silencing. J Mol Biol. 1993;232(3):747–755.
  • Zhou J, Zhou H, Liu Y, et al. Inhibition of CTCF-regulated miRNA-185-5p mitigates renal interstitial fibrosis of chronic kidney disease. Epigenomics. 2021;13(11):859–873.
  • Fan J, Du W, Zhang H, et al. Transcriptional downregulation of miR-127-3p by CTCF promotes prostate cancer bone metastasis by targeting PSMB5. FEBS Lett. 2020;594(3):466–476.
  • Li L, Sun Z, Xu C, et al. Adenovirus-mediated overexpression of sST2 attenuates cardiac injury in the rat with severe acute pancreatitis. Life Sci. 2018;202:167–174.
  • Liu Z, Liu J, Zhao K, et al. Role of daphnetin in rat severe acute pancreatitis through the regulation of TLR4/NF-[formula: see text]B signaling pathway activation. Am J Chin Med. 2016;44(1):149–163.
  • Wu J, Wang J, Li X, et al. MicroRNA-145 mediates the formation of angiotensin II-Induced murine abdominal aortic aneurysm. Heart Lung Circ. 2017; 26(6):619–626.
  • Zerem E. Treatment of severe acute pancreatitis and its complications. World J Gastroenterol. 2014;20(38):13879–13892.
  • Ren S, Pan L, Yang L, et al. miR-29a-3p transferred by mesenchymal stem cells-derived extracellular vesicles protects against myocardial injury after severe acute pancreatitis. Life Sci. 2021;272:119189
  • Deng C, Zhao L, Yang Z, et al. Targeting HMGB1 for the treatment of sepsis and sepsis-induced organ injury. Acta Pharmacol Sin. 2021. Online ahead of print.
  • Kohno T, Anzai T, Naito K, et al. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc Res. 2009;81(3):565–573.
  • Goldstein RS, Gallowitsch-Puerta M, Yang L, et al. Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock. 2006;25(6):571–574.
  • Peltz ED, Moore EE, Eckels PC, et al. HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. Shock. 2009;32(1):17–22.
  • Huang W, Tang Y, Li L. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine. 2010;51(2):119–126.
  • Arriaga-Pizano L, Bosco-Garate I, Martinez-Ordaz JL, et al. High serum levels of High-Mobility group box 1 (HMGB1) and low levels of heat shock protein 70 (Hsp70) are associated with poor prognosis in patients with acute Pancreatitis. Arch Med Res. 2018;49(7):504–511.
  • Li N, Wang BM, Cai S, et al. The role of serum high mobility group box 1 and interleukin-6 levels in acute pancreatitis: a Meta-Analysis. J Cell Biochem. 2018;119(1):616–624.
  • Hoque R, Mehal WZ. Inflammasomes in pancreatic physiology and disease. Am J Physiol Gastrointest Liver Physiol. 2015;308(8):G643–51.
  • Malmstrom ML, Hansen MB, Andersen AM, et al. Cytokines and organ failure in acute pancreatitis: inflammatory response in acute pancreatitis. Pancreas. 2012;41(2):271–277.
  • Huang SQ, Wen Y, Sun HY, et al. Abdominal paracentesis drainage attenuates intestinal inflammation in rats with severe acute pancreatitis by inhibiting the HMGB1-mediated TLR4 signaling pathway. World J Gastroenterol. 2021;27(9):815–834.
  • Cao J, Da Y, Li H, et al. Upregulation of microRNA-451 attenuates myocardial I/R injury by suppressing HMGB1. PLoS One. 2020;15(7):e0235614.
  • Chen ZX, He D, Mo QW, et al. MiR-129-5p protects against myocardial ischemia-reperfusion injury via targeting HMGB1. Eur Rev Med Pharmacol Sci. 2020;24(8):4440–4450.
  • Xing J, Liu J, Liu J, et al. miR-129-5p ameliorates ischemia-reperfusion injury by targeting HMGB1 in myocardium. Gen Physiol Biophys. 2020;39(5):461–470.
  • Wu X, Liu Y, Mo S, et al. LncRNA TUG1 competitively binds to miR-340 to accelerate myocardial ischemia-reperfusion injury. Faseb J. 2021;35(1):e21163
  • Wang D, Lin B, Zhang W, et al. Up-regulation of SNHG16 induced by CTCF accelerates cardiac hypertrophy by targeting miR-182-5p/IGF1 axis. Cell Biol Int. 2020;44(7):1426–1435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.