209
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Fisetin alleviates thioacetamide-induced hepatic fibrosis in rats by inhibiting Wnt/β-catenin signaling pathway

, , , , , & ORCID Icon show all
Pages 355-366 | Received 02 Nov 2021, Accepted 20 Feb 2022, Published online: 08 Mar 2022

References

  • Mehta KJ, Farnaud SJ, Sharp PA. Iron and liver fibrosis: mechanistic and clinical aspects. World J Gastroenterol. 2019;25(5):521–538.
  • Chen L, Brenner DA, Kisseleva T. Combatting fibrosis: exosome-based therapies in the regression of liver fibrosis. Hepatol Commun. 2019;3(2):180–192.
  • Liu Y-M, Cong S, Cheng Z, et al. Platycodin D alleviates liver fibrosis and activation of hepatic stellate cells by regulating JNK/c-JUN signal pathway. Eur J Pharmacol. 2020;876:172946.
  • Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18(3):151–166.
  • Connolly G, Li Z, Young M, et al. P5000 Wnt/b-catenin signalling drives angiotensin II induced cardiac fibrosis via WISP-1. Eur Heart J. 2019;40(Supplement_1):0178. ehz746.
  • Wang X, Dai W, Wang Y, et al. Blocking the Wnt/β-catenin pathway by lentivirus-mediated short hairpin RNA targeting β-catenin gene suppresses silica-induced lung fibrosis in mice. Int J Environ Res Public Health. 2015;12(9):10739–10754.
  • Feng Y, Ren J, Gui Y, et al. Wnt/β-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol. 2018;29(1):182–193.
  • Cui L, Jia X, Zhou Q, et al. Curcumin affects β-catenin pathway in hepatic stellate cell in vitro and in vivo. J Pharm Pharmacol. 2014;66(11):1615–1622.
  • Akhtar T, Sheikh N. An overview of thioacetamide-induced hepatotoxicity. Toxin Rev. 2013;32(3):43–46.
  • Salama SM, Abdulla MA, AlRashdi AS, et al. Mechanism of hepatoprotective effect of Boesenbergia rotunda in thioacetamide-induced liver damage in rats. Evid-Based Complement Alternat Med. 2013;2013:1–13.
  • Sundarraj K, Raghunath A, Perumal E. A review on the chemotherapeutic potential of fisetin: in vitro evidences. Biomed Pharmacother. 2018;97:928–940.
  • Naeimi AF, Alizadeh M. Antioxidant properties of the flavonoid fisetin: an updated review of in vivo and in vitro studies. Trends Food Sci Technol. 2017;70:34–44.
  • Zhang L, Tong X, Huang J, et al. Fisetin alleviated bleomycin-induced pulmonary fibrosis partly by rescuing alveolar epithelial cells from senescence. Front Pharmacol. 2020;11:553690.
  • Xu M, Ge C, Qin Y, et al. Activated TNF-α/RIPK3 signaling is involved in prolonged high fat diet-stimulated hepatic inflammation and lipid accumulation: inhibition by dietary fisetin intervention. Food Funct. 2019;10(3):1302–1316.
  • Gillessen A, Schmidt HH-J. Silymarin as supportive treatment in liver diseases: a narrative review. Adv Ther. 2020;37(4):1279–1301.
  • Tighe SP, Akhtar D, Iqbal U, et al. Chronic liver disease and silymarin: a biochemical and clinical review. J Clin Transl Hepatol. 2020;8(4):454–458.
  • El-Baz FK, Salama AA, Hussein RA. Dunaliella salina microalgae oppose thioacetamide-induced hepatic fibrosis in rats. Toxicol Rep. 2020;7:36–45.
  • Ren Q, Tao S, Guo F, et al. Natural flavonol fisetin attenuated hyperuricemic nephropathy via inhibiting IL-6/JAK2/STAT3 and TGF-β/SMAD3 signaling. Phytomedicine. 2021;87:153552.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408.
  • Bancroft JD, Gamble M. Theory and practice of histological techniques. London, England: Churchill Livingstone; 2008.
  • Hsu S-M, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981;29(4):577–580.
  • Berumen J, Baglieri J, Kisseleva T, et al. Liver fibrosis: pathophysiology and clinical implications. WIREs Mech Dis. 2021;13(1):e1499.
  • Eissa LA, Kenawy HI, El-Karef A, et al. Antioxidant and anti-inflammatory activities of berberine attenuate hepatic fibrosis induced by thioacetamide injection in rats. Chem Biol Interact. 2018;294:91–100.
  • Bulle F, Mavier P, Zafrani ES, et al. Mechanism of gamma-glutamyl transpeptidase release in serum during intrahepatic and extrahepatic cholestasis in the rat: a histochemical, biochemical and molecular approach. Hepatology. 1990;11(4):545–550.
  • El-Magd NFA, El-Karef A, El-Shishtawy MM, et al. Hepatoprotective effects of glycyrrhizin and omega-3 fatty acids on nuclear factor-kappa B pathway in thioacetamide-induced fibrosis in rats. Egypt J Basic Appl Sci. 2015;2(2):65–74.
  • Zhao L, Zhang J, Pan L, et al. Protective effect of 7, 3′, 4′-flavon-3-ol (fisetin) on acetaminophen-induced hepatotoxicity in vitro and in vivo. Phytomedicine. 2019;58:152865.
  • Zhang J, Zhao L, Hu C, et al. Fisetin prevents acetaminophen-induced liver injury by promoting autophagy. Front Pharmacol. 2020;11:162.
  • Jayakumar M, Subramanian P. Chronotherapeutic influence of fisetin on ammonium chloride-induced hyperammonemic rats. Biol Rhythm Res. 2013;44(4):577–588.
  • Jalali SM, Najafzadeh H, Bahmei S. Protective role of silymarin and D-penicillamine against lead-induced liver toxicity and oxidative stress. Toxicol Ind Health. 2017;33(6):512–518.
  • Sukalingam K, Ganesan K, Xu B. Protective effect of aqueous extract from the leaves of Justicia tranquebariesis against thioacetamide-induced oxidative stress and hepatic fibrosis in rats. Antioxidants. 2018;7(7):78.
  • Lee YH, Son JY, Kim KS, et al. Estrogen deficiency potentiates thioacetamide-induced hepatic fibrosis in Sprague–Dawley rats. IJMS. 2019;20(15):3709.
  • Althunibat OY, Al Hroob AM, Abukhalil MH, et al. Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci. 2019;221:83–92.
  • Ali AM, El-Tawil OS, Al-Mokaddem AK, et al. Promoted inhibition of TLR4/miR-155/NFkB p65 signaling by cannabinoid receptor 2 agonist (AM1241), aborts inflammation and progress of hepatic fibrosis induced by thioacetamide. Chem Biol Interact. 2021;336:109398.
  • Fielding CA, Jones GW, McLoughlin RM, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity. 2014;40(1):40–50.
  • Yang YM, Seki E. TNFα in liver fibrosis. Curr Pathobiol Rep. 2015;3(4):253–261.
  • Elnfarawy AA, Nashy AE, Abozaid AM, et al. Vinpocetine attenuates thioacetamide-induced liver fibrosis in rats. Hum Exp Toxicol. 2021;40(2):355–368.
  • Zhang H-F, Zhang H-B, Wu X-P, et al. Fisetin alleviates sepsis-induced multiple organ dysfunction in mice via inhibiting p38 MAPK/MK2 signaling. Acta Pharmacol Sin. 2020;41(10):1348–1356.
  • Hu L-F, Feng J, Dai X, et al. Oral flavonoid fisetin treatment protects against prolonged high-fat-diet-induced cardiac dysfunction by regulation of multicombined signaling. J Nutr Biochem. 2020;77:108253.
  • Zhang YE. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 2017;9(2):a022129.
  • El-Mihi KA, Kenawy HI, El-Karef A, et al. Naringin attenuates thioacetamide-induced liver fibrosis in rats through modulation of the PI3K/akt pathway. Life Sci. 2017;187:50–57.
  • Hsieh Y-C, Lee K-C, Lei H-J, et al. Pro-renin receptor knockdown attenuates liver fibrosis through inactivation of ERK/TGF-β1/SMAD3 pathway. Cell Mol Gastroenterol Hepatol. 2021;12(3):813–838.
  • Bansal R, Nagórniewicz B, Prakash J. Clinical advancements in the targeted therapies against liver fibrosis. Mediators Inflamm. 2016;2016:7629724.
  • Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta. 2013;1832(7):876–883.
  • El-Baz FK, Salama A, Ali SI, et al. Haematococcus pluvialis carotenoids enrich fractions ameliorate liver fibrosis induced by thioacetamide in rats: modulation of metalloproteinase and its inhibitor. Biomed Res Int. 2021;2021:6631415.
  • Sun J, Wu Y, Long C, et al. Anthocyanins isolated from blueberry ameliorates CCl4 induced liver fibrosis by modulation of oxidative stress, inflammation and stellate cell activation in mice. Food Chem Toxicol. 2018;120:491–499.
  • Agioutantis PC, Kotsikoris V, Kolisis FN, et al. RNA-seq data analysis of stimulated hepatocellular carcinoma cells treated with epigallocatechin gallate and fisetin reveals target genes and action mechanisms. Comput Struct Biotechnol J. 2020;18:686–695.
  • Choi M-S, Choi J-Y, Kwon E-Y. Fisetin alleviates hepatic and adipocyte fibrosis and insulin resistance in diet-induced obese mice. J Med Food. 2020;23(10):1019–1032.
  • Zhang C, Liu X-Q, Sun H-N, et al. Octreotide attenuates hepatic fibrosis and hepatic stellate cells proliferation and activation by inhibiting Wnt/β-catenin signaling pathway, c-Myc and cyclin D1. Int Immunopharmacol. 2018;63:183–190.
  • Ying J, Li H, Yu J, et al. WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res. 2008;14(1):55–61.
  • Koehler A, Schlupf J, Schneider M, et al. Loss of xenopus cadherin-11 leads to increased Wnt/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Dev Biol. 2013;383(1):132–145.
  • Nishikawa K, Osawa Y, Kimura K. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs. IJMS. 2018;19(10):3103.
  • Li T, Zhang L, Huo X. Inhibitory effects of aesculetin on the proliferation of colon cancer cells by the Wnt/β-catenin signaling pathway. Oncol Lett. 2018;15(5):7118–7122.
  • Li L-y, Yang C-C, Yang J-F, et al. ZEB1 regulates the activation of hepatic stellate cells through Wnt/β-catenin signaling pathway. Eur J Pharmacol. 2019;865:172787.
  • Ma B, van Blitterswijk CA, Karperien MA. A Wnt/β-catenin negative feedback loop inhibits interleukin-1-induced matrix metalloproteinase expression in human articular chondrocytes. Arthritis Rheum. 2012;64(8):2589–2600.
  • Abd Elhameed AG, Helal MG, Said E, et al. Saxagliptin defers thioacetamide-induced hepatocarcinogenesis in rats: a novel suppressive impact on Wnt/hedgehog/Notch1 signaling. Environ Toxicol Pharmacol. 2021;86:103668.
  • Abdel-Bakky M, Helal G, El-Sayed E, et al. Silencing of tissue factor by antisense deoxyoligonucleotide mitigates thioacetamide-induced liver injury. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(10):1887–1898.
  • Syed DN, Afaq F, Maddodi N, et al. Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased Mitf levels. J Invest Dermatol. 2011;131(6):1291–1299.
  • Agraval H, Yadav UC. MMP-2 and MMP-9 mediate cigarette smoke extract-induced epithelial–mesenchymal transition in airway epithelial cells via EGFR/akt/GSK3β/β-catenin pathway: amelioration by fisetin. Chem Biol Interact. 2019;314:108846.
  • Liang Y, Kong D, Zhang Y, et al. Fisetin inhibits cell proliferation and induces apoptosis via JAK/STAT3 signaling pathways in human thyroid TPC 1 cancer cells. Biotechnol Bioproc E. 2020;25(2):197–205.
  • Vaid M, Prasad R, Sun Q, et al. Silymarin targets β-catenin signaling in blocking migration/invasion of human melanoma cells. PLoS One. 2011;6(7):e23000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.