111
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

SDH5 down-regulation mitigates the damage of osteoporosis via inhibiting the MyD88/NF-κB signaling pathway

, , , , &
Pages 317-327 | Received 18 Apr 2022, Accepted 30 Oct 2022, Published online: 02 Dec 2022

References

  • Pisani P, Renna MD, Conversano F, et al. Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop. 2016;7(3):171–181.
  • Yeap SS, Hew FL, Damodaran P, et al. A summary of the malaysian clinical guidance on the management of postmenopausal and male osteoporosis, 2015. Osteoporos Sarcopenia. 2016;2(1):1–12.
  • Shi T, Shi Y, Gao H, et al. Exercised accelerated the production of muscle-derived kynurenic acid in skeletal muscle and alleviated the postmenopausal osteoporosis through the Gpr35/NFkappaB p65 pathway. J Orthop Translat. 2022;35:1–12.
  • Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 2006;194(2 Suppl):S3–S11.
  • Li J, Yin Z, Huang B, et al. Stat3 signaling pathway: a future therapeutic target for bone-related diseases. Front Pharmacol. 2022;13:897539.
  • Chen X, Zhi X, Wang J, et al. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34.
  • Chen X, Zhi X, Wang J, et al. Correction to: RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2022;10(1):54.
  • Qin L, He T, Yang D, et al. Osteocyte beta1 integrin loss causes low bone mass and impairs bone mechanotransduction in mice. J Orthop Translat. 2022;34:60–72.
  • Seeman E. The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am. 2003;32(1):25–38.
  • Wang T, Yang L, Jiang J, et al. Pulsed electromagnetic fields: promising treatment for osteoporosis. Osteoporos Int. 2019;30(2):267–276.
  • Mody N, Parhami F, Sarafian TA, et al. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med. 2001;31(4):509–519.
  • Vääräniemi J, Halleen JM, Kaarlonen K, et al. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res. 2004;19(9):1432–1440.
  • Gyoneva L, Hovell CB, Pewowaruk RJ, et al. Cell-matrix interaction during strain-dependent remodelling of simulated collagen networks. Interface Focus. 2016;6;6(1):20150069.
  • Kim BJ, Shin KO, Kim H, et al. The effect of sphingosine-1-phosphate on bone metabolism in humans depends on its plasma/bone marrow gradient. Mar. J Endocrinol Invest. 2016;39(3):297–303.
  • Pellegrini GG, Morales CC, Wallace TC, et al. Avenanthramides prevent osteoblast and osteocyte apoptosis and induce osteoclast apoptosis in vitro in an Nrf2-Independent manner. Nutrients. 2016;8(7):423.
  • Zafreen L, Walker-Kopp N, Huang LS, et al. In-vitro, SDH5-dependent flavinylation of immobilized human respiratory complex II flavoprotein. Arch Biochem Biophys. 2016;604:47–56.
  • Bayley JP, Kunst HP, Cascon A, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 2010;11(4):366–372.
  • Hao HX, Khalimonchuk O, Schraders M, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325(5944):1139–1142.
  • Kunst HP, Rutten MH, de Mönnink JP, et al. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res. 2011;17(2):247–254.
  • Zhang Y, Zhao Q. AEG-1 deletion promotes cartilage repair and modulates bone remodeling-related cytokines via TLR4/MyD88/NF-kappaB inhibition in ovariectomized rats with osteoporosis. Ann Transl Med. 2020;8(20):1298.
  • Liu T, Xiang Z, Chen F, et al. The abrownin suppresses in vitro osteoclastogenesis and prevents bone loss in ovariectomized rats. Biomed Pharmacother. 2018;106:1339–1347.
  • Cui Q, Xing J, Yu M, et al. Mmu-miR-185 depletion promotes osteogenic differentiation and suppresses bone loss in osteoporosis through the BGN-mediated BMP/smad pathway. Cell Death Dis. 2019;10(3):172.
  • Cai X, Yi X, Zhang Y, et al. Genetic susceptibility of postmenopausal osteoporosis on sulfide quinone reductase-like gene. Osteoporos Int. 2018;29(9):2041–2047.
  • Hu Y, Li X, Zhi X, et al. RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss. EMBO Rep. 2021;22(7):e52481.
  • Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys. 2008;473(2):98–105.
  • Zhang C. Transcriptional regulation of bone formation by the osteoblast-specific transcription factor osx. J Orthop Surg Res. 2010;5:37.
  • Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996;382(6590):448–452.
  • Kurt-Sirin O, Yilmaz-Aydogan H, Uyar M, et al. Combined effects of collagen type I alpha1 (COL1A1) Sp1 polymorphism and osteoporosis risk factors on bone mineral density in Turkish postmenopausal women. Gene. 2014;540(2):226–231.
  • Geng Q, Gao H, Yang R, et al. Pyrroloquinoline quinone prevents estrogen Deficiency-Induced osteoporosis by inhibiting oxidative stress and osteocyte senescence. Int J Biol Sci. 2019;15(1):58–68.
  • Hu F, Jiang C, Bu G, et al. Silencing long noncoding RNA Colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis. Cancer Gene Ther. 2021;28(10-11):1150–1161.
  • Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300.
  • Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab. 2010;21(6):369–374.
  • Li J, Wang Q, Yang R, et al. BMI-1 mediates Estrogen-Deficiency-Induced bone loss by inhibiting reactive oxygen species accumulation and T cell activation. J Bone Miner Res. 2017;32(5):962–973.
  • Sakamoto W, Isomura H, Fujie K, et al. The effect of vitamin K2 on bone metabolism in aged female rats. Osteoporos Int. 2005;16(12):1604–1610.
  • Ozgocmen S, Kaya H, Fadillioglu E, et al. Effects of calcitonin, risedronate, and raloxifene on erythrocyte antioxidant enzyme activity, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Arch Med Res. 2007;38(2):196–205.
  • O'Driscoll SW. The healing and regeneration of articular cartilage. J Bone Joint Surg Am. 1998;80(12):1795–1812.
  • Zhang S, Chuah SJ, Lai RC, et al. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27.
  • Ma Y, Qi Y, Wang L, et al. SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis. Free Radic Biol Med. 2019;134:458–467.
  • Zong Y, Li Q, Zhang F, et al. SDH5 depletion enhances radiosensitivity by regulating p53: a new method for noninvasive prediction of radiotherapy response. Theranostics 2019;9(22):6380–6395.
  • Zhang H, Liu L, Jiang C, et al. MMP9 protects against LPS-induced inflammation in osteoblasts. Innate Immun. 2020;26(4):259–269.
  • Dai W, Wang M, Wang P, et al. lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome. Int J Mol Med. 2021;47(2):607–620.
  • Feng Y, Ding L, Li L. LPS-inducible circAtp9b is highly expressed in osteoporosis and promotes the apoptosis of osteoblasts by reducing the formation of mature miR-17-92a. J Orthop Surg Res. 2022;17(1):193.
  • Guo C, Wang SL, Xu ST, et al. SP600125 reduces lipopolysaccharide-induced apoptosis and restores the early-stage differentiation of osteoblasts inhibited by LPS through the MAPK pathway in MC3T3-E1 cells. Int J Mol Med. 2015;35(5):1427–1434.
  • Zhang X, Li X, Fang J, et al. 2R,3R)dihydromyricetin inhibits osteoclastogenesis and bone loss through scavenging LPS-induced oxidative stress and NF-kappaB and MAPKs pathways activating. J Cell Biochem. 2018;119(11):8981–8995.
  • Park SY, Kim SH, Yoon HK, et al. The role of nuclear Factor-E2-Related factor 1 in the oxidative stress response in MC3T3-E1 osteoblastic cells. Endocrinol Metab (Seoul). 2016;31(2):336–342.
  • Medvedev AE, Sabroe I, Hasday JD, et al. Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease. J Endotoxin Res. 2006;12(3):133–150.
  • Yamamoto M, Sato S, Hemmi H, et al. Essential role for TIRAP in activation of the signalling Cascade shared by TLR2 and TLR4. Nature. 2002;420(6913):324–329.
  • Lin TH, Tamaki Y, Pajarinen J, et al. Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-κB as a therapeutic target. Acta Biomater. 2014;10(1):1–10.
  • Chen X, Zhang S, Chen X, et al. Emodin promotes the osteogenesis of MC3T3-E1 cells via BMP-9/smad pathway and exerts a preventive effect in ovariectomized rats. Acta Biochim Biophys Sin (Shanghai). 2017;49(10):867–878.
  • Sato N, Takahashi N, Suda K, et al. MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha. J Exp Med. 2004;200(5):601–611.
  • Joo JH, Huh JE, Lee JH, et al. A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase. Sci Rep. 2016;6:22389.
  • Abu-Amer Y. NF-κB signaling and bone resorption. Osteoporos Int. 2013;24(9):2377–2386.
  • Vijayan V, Khandelwal M, Manglani K, et al. Methionine down-regulates TLR4/MyD88/NF-kappaB signalling in osteoclast precursors to reduce bone loss during osteoporosis. Br J Pharmacol. 2014;171(1):107–121.
  • Zhou Y, Ming J, Deng M, et al. Berberine-mediated up-regulation of surfactant protein D facilitates cartilage repair by modulating immune responses via the inhibition of TLR4/NF-ĸB signaling. Pharmacol Res. 2020;155:104690.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.