45
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Comparative analysis of immunological changes following realgar and arsenic trioxide treatments in a murine model of myelodysplastic syndrome

, , , , , , , , , , & show all
Pages 408-416 | Received 07 Nov 2022, Accepted 11 Apr 2024, Published online: 30 May 2024

References

  • Cazzola M. Myelodysplastic syndromes. N Engl J Med. 2020;383(14):1358–1374. doi: 10.1056/NEJMra1904794.
  • Bazinet A, Bravo GM. New approaches to myelodysplastic syndrome treatment. Curr Treat Options Oncol. 2022;23(5):668–687. doi: 10.1007/s11864-022-00965-1.
  • Zhao G, Wang Q, Li S, et al. Resistance to hypomethylating agents in myelodysplastic syndrome and acute myeloid leukemia from clinical data and molecular mechanism. Front Oncol. 2021;11:706030. doi: 10.3389/fonc.2021.706030.
  • Lee P, Yim R, Yung Y, et al. Molecular targeted therapy and immunotherapy for myelodysplastic syndrome. Int J Mol Sci. 2021;22(19):10232. doi: 10.3390/ijms221910232.
  • Vittayawacharin P, Kongtim P, Ciurea SO. Comprehensive review on allogeneic stem cell transplantation for patients with myelodysplastic syndromes. Am J Hematol. 2022;98(2):322–337. doi: 10.1002/ajh.26763.
  • Nagata Y, Maciejewski JP. The functional mechanisms of mutations in myelodysplastic syndrome. Leukemia. 2019;33(12):2779–2794. doi: 10.1038/s41375-019-0617-3.
  • Morganti C, Ito K, Yanase C, et al. NPM1 ablation induces HSC aging and inflammation to develop myelodysplastic syndrome exacerbated by P53 loss. EMBO Rep. 2022;23(5):e54262. doi: 10.15252/embr.202154262.
  • Qiao W, Young E, Feng C, et al. Association between abnormal lipid profile and inflammation and progression of myelodysplastic syndrome to acute leukemia. Exp Hematol Oncol. 2022;11(1):58. doi: 10.1186/s40164-022-00309-7.
  • Gonçalves AC, Alves R, Baldeiras I, et al. DNA methylation is correlated with oxidative stress in myelodysplastic syndrome-relevance as complementary prognostic biomarkers. Cancers. 2021;13(13):3138. doi: 10.3390/cancers13133138.
  • Osswald L, Hamarsheh S, Uhl FM, et al. Oncogenic KrasG12D activation in the nonhematopoietic bone marrow microenvironment causes myelodysplastic syndrome in mice. Mol Cancer Res. 2021;19(9):1596–1608. doi: 10.1158/1541-7786.MCR-20-0275.
  • Syed K, Naguib S, Liu Z-J, et al. Novel combinations to improve hematopoiesis in myelodysplastic syndrome. Stem Cell Res Ther. 2020;11(1):132. doi: 10.1186/s13287-020-01647-1.
  • Peng X, Zhu X, Di T, et al. The Yin-Yang of immunity: immune dysregulation in myelodysplastic syndrome with different risk stratification. Front Immunol. 2022;13:994053. doi: 10.3389/fimmu.2022.994053.
  • Montes P, Bernal M, Campo LN, et al. Tumor genetic alterations and features of the immune microenvironment drive myelodysplastic syndrome escape and progression. Cancer Immunol Immunother. 2019;68(12):2015–2027. doi: 10.1007/s00262-019-02420-x.
  • Fu R, Li L, Hu J, et al. Elevated TIM3 expression of T helper cells affects immune system in patients with myelodysplastic syndrome. J Investig Med. 2019;67(8):1125–1130. doi: 10.1136/jim-2019-001059.
  • Kittang AO, Kordasti S, Sand KE, et al. Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology. 2016;5(2):e1062208. doi: 10.1080/2162402X.2015.1062208.
  • Kordasti SY, Ingram W, Hayden J, et al. CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood. 2007;110(3):847–850. doi: 10.1182/blood-2007-01-067546.
  • Aul C, Giagounidis A, Germing U. Epidemiological features of myelodysplastic syndromes: results from regional cancer surveys and hospital-based statistics. Int J Hematol. 2001;73(4):405–410. doi: 10.1007/BF02994001.
  • Germing U, Kobbe G, Haas R, et al. Myelodysplastic syndromes: diagnosis, prognosis, and treatment. Dtsch Arztebl Int. 2013;110(46):783–790. doi: 10.3238/arztebl.2013.0783.
  • Li X, Xiao Z-J, Chang C-K, et al. Distinct clinical and experimental characteristics in the patients younger than 60 years old with myelodysplastic syndromes. PLOS One. 2013;8(2):e57392. doi: 10.1371/journal.pone.0057392.
  • Wang F, Ni J, Wu L, et al. Gender disparity in the survival of patients with primary myelodysplastic syndrome. J Cancer. 2019;10(5):1325–1332. doi: 10.7150/jca.28220.
  • Chen Z, Chen S-J. Poisoning the devil. Cell. 2017;168(4):556–560. doi: 10.1016/j.cell.2017.01.029.
  • Chen S-J, Zhou G-B, Zhang X-W, et al. From an old remedy to a magic bullet: molecular mechanisms underlying the therapeutic effects of arsenic in fighting leukemia. Blood. 2011;117(24):6425–6437. doi: 10.1182/blood-2010-11-283598.
  • Chen L, Zhu H-M, Li Y, et al. Arsenic trioxide replacing or reducing chemotherapy in consolidation therapy for acute promyelocytic leukemia (APL2012 trial). Proc Natl Acad Sci USA. 2021;118(6):e2020382118. doi: 10.1073/pnas.2020382118.
  • Zhu H-H, Huang X-J. Outpatient oral treatment for acute promyelocytic leukemia. N Engl J Med. 2015;372(9):885. doi: 10.1056/NEJMc1500125.
  • Zhu H-H, Hu J, Lo-Coco F, et al. The simpler, the better: oral arsenic for acute promyelocytic leukemia. Blood. 2019;134(7):597–605. doi: 10.1182/blood.2019000760.
  • Ming J, Liu W-Y, Xiao H-Y, et al. Oral arsenic-containing Qinghuang Powder: a potential drug for myelodysplastic syndromes. Chin J Integr Med. 2022;28(8):762–768. doi: 10.1007/s11655-020-3254-9.
  • Zheng D, Zhou Y, Liu Y, et al. Molecular mechanism investigation on monomer kaempferol of the traditional medicine Dingqing Tablet in promoting apoptosis of acute myeloid leukemia HL-60 cells. Evid Based Complement Alternat Med. 2022;2022:8383315–8383311. doi: 10.1155/2022/8383315.
  • Zhu H-H, Huang X-J. Oral arsenic and retinoic acid for non-high-risk acute promyelocytic leukemia. N Engl J Med. 2014;371(23):2239–2241. doi: 10.1056/NEJMc1412035.
  • Zhu H-H, Wu D-P, Du X, et al. Oral arsenic plus retinoic acid versus intravenous arsenic plus retinoic acid for non-high-risk acute promyelocytic leukaemia: a non-inferiority, randomised phase 3 trial. Lancet Oncol. 2018;19(7):871–879. doi: 10.1016/S1470-2045(18)30295-X.
  • Tao YC, Lu JH, Wang DQ, et al. Efficacy and safety of compound arsenic trioxide in mice with myelodysplastic syndrome and its effect on intestinal flora. CJTCMP. 2022;37(5):2541–2547.
  • Fozza C. Retuning the immune system in myelodysplastic syndromes: from immunomodulatory approaches to vaccination strategies and non myeloablative hemopoietic cell transplant. Crit Rev Oncol Hematol. 2019;133:112–119. doi: 10.1016/j.critrevonc.2018.11.001.
  • Choudhary GS, Pellagatti A, Agianian B, et al. Activation of targetable inflammatory immune signaling is seen in myelodysplastic syndromes with SF3B1 mutations. Elife. 2022;11:e78136. doi: 10.7554/eLife.78136.
  • Wang L, Wang R, Fan L, et al. Arsenic trioxide is an immune adjuvant in liver cancer treatment. Mol Immunol. 2017;81:118–126. doi: 10.1016/j.molimm.2016.12.001.
  • Song M-M, Fang S, Tanaka S, et al. Effects of arsenic disulfide on proliferation, cytokine production, and frequencies of CD4(+), CD8(+), and regulatory T cells in mitogen-activated human peripheral blood mononuclear cells. Int Immunopharmacol. 2015;29(2):832–838. doi: 10.1016/j.intimp.2015.08.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.