9
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Citicoline modulates inflammatory signaling pathways in the spleen of rats exposed to gamma-radiation

&
Pages 564-571 | Received 19 Mar 2024, Accepted 14 Jul 2024, Published online: 25 Jul 2024

References

  • Oh JY, Fernando IPS, Jeon YJ. Potential applications of radioprotective phytochemicals from marine algae. Algae. 2016;31(4):403–414. doi: 10.4490/algae.2016.31.12.1.
  • Singh VK, Newman VL, Romaine PL, et al. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev Mol Diagn. 2016;16(1):65–81. doi: 10.1586/14737159.2016.1121102.
  • Reisz JA, Bansal N, Qian J, et al. Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection. Antioxid Redox Signal. 2014;21(2):260–292. doi: 10.1089/ars.2013.5489.
  • Tarantino G, Scalera A, Finelli C. Liver- spleen axis: intersection between immunity, infections and metabolism. WJG. 2013;19(23):3534–3542. doi: 10.3748/wjg.v19.i23.3534.
  • Lang PA, Xu HC, Grusdat M, et al. Reactive oxygen species delay control of lymphocytic choriomeningitis virus. Cell Death Differ. 2013;20(4):649–658. doi: 10.1038/cdd.2012.167.
  • Dominguez AN, Contreras I, Estrada JA. Oxidative damage in lipids in the central nervous system and spleen in iron-deficient mice. Acta Univ. 2017;27:78–83.
  • Gupta ML, Verma S. Prophylactic strategies to minimize the effect of whole body irradiation on hematopoietic, gastrointestinal and respiratory system leading to morbidity/mortality in animals. J Radiat Cancer Res. 2018;9(1):4–12. doi: 10.4103/jrcr.jrcr_2_18.
  • Mantena RKR, Odilia LC, Wijburg OLC, et al. Reactive oxygen species are the major Antibacterials against Salmonella Typhimurium purine Auxotrophs in the phagosome of RAW 264.7 cells. Cell Microbiol. 2008;10(5):1058–1073. doi: 10.1111/j.1462-5822.2007.01105.x.
  • Mansoub NH, Sarvestani AH. Effects of gamma irradiation on histomorphology of different organs in rats. Ann Biol Res. 2011;2:580–585.
  • Xu JY, Zhao L, Chong Y, et al. Protection effect of sanguinarine on whole-body exposure of X radiation in BALB/c mice. Braz J Pharm Sci. 2014;50(1):101–106. doi: 10.1590/S1984-82502011000100010.
  • Park B, Yee C, Lee KM. The effect of radiation on the immune response to cancer. Int J Mol Sci. 2014;15(1):927–943. doi: 10.3390/ijms15010927.
  • Jeong H, Bok S, Hong BJ, et al. Radiation induced immune responses: mechanisms and therapeutic prospectives. Blood Res. 2016;51(3):157–163. doi: 10.5045/br.2016.51.3.157.
  • Saver JL. Citicoline: update on a promising and widely available agent for neuroprotection and neurorepair. Rev Neurol Dis. 2008;5(4):167–177.
  • Secades JJ. Citicoline: pharmacological and clinical review, 2010 update. Rev Neurol. 2011;63(S03):S1–S73.
  • Grieb P. Neuroprotective properties of citicoline: facts, doubts and unresolved issues. CNS Drugs. 2014;28(3):185–193. doi: 10.1007/s40263-014-0144-8.
  • Köhnke R, Mei J, Park M, et al. Fatty acids and glucose in high concentration down-regulates ATP synthase beta-subunit protein expression in INS-1 cells. Nutr Neurosci. 2007;10(5–6):273–278. doi: 10.1080/10284150701745910.
  • Ilcol YO, Yilmaz Z, Cansev M, et al. Choline or CDP-choline alters serum lipid responses to endotoxin in dogs and rats: involvement of the peripheral nicotinic acetylcholine receptors. Shock. 2009;32(3):286–294. doi: 10.1097/SHK.0b013e3181971b02.
  • Adibhatla RM, Hatcher JF, Dempsey RJ. Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal. 2003;5(5):647–654 doi: 10.1089/152308603770310329.
  • Habiburrahman M, Sutopo S, Sarkowi W. Plausible use of citicoline as an adjuvant in central nervous system infections: a case report and review of the literature. World Acad Sci J. 2024;6(4):39. 2024. doi: 10.3892/wasj.2024.254.
  • Michał F, Dorota M, Kinga I S-M, et al. CDP-choline (citicoline) attenuates brain damage in a rat model of birth asphyxia. Acta Neurobiol Exp. 2008;68(3):389–397. doi: 10.55782/ane-2008-1705.
  • Bancroft JD, Stevens AE. Theory and practice of histological techniques. 4th ed. Edinburgh: Churchill Livingstone; 1996. p. 766.
  • Nair CK, Parida DK, Nomura T. Radioprotectors in radiotherapy. J Radiat Res. 2001;42(1):21–37. doi: 10.1269/jrr.42.21.
  • Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci. 2019;9(1):25. doi: 10.1186/s13578-019-0286-y.
  • Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–616. doi: 10.1126/science.1175202.
  • Koo HJ, Jang SA, Yang KH, et al. Effects of red ginseng on the regulation of cyclooxygenase-2 of spleen cells in whole-body gamma irradiated mice. Food Chem Toxicol. 2013;62:839–846. doi: 10.1016/j.fct.2013.10.009.
  • Mohamed HA, et al. The renoprotective effect of gum arabic in gamma-irradiated and cisplatin treated rats. IJSRP. 2015;5(6):1–11.
  • El-Ghazaly MA, Fadel N, Rashed E, et al. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can J Physiol Pharmacol. 2017;95(2):101–110. doi: 10.1139/cjpp-2016-0183.
  • Saif-Elnasr M, Abdel-Aziz N, El-Batal AI. Ameliorative effect of selenium nanoparticles and fish oil on cisplatin and gamma irradiation-induced nephrotoxicity in male albino rats. Drug Chem Toxicol. 2019a;42(1):94–103. doi: 10.1080/01480545.2018.1497050.
  • Abdel Fattah SM, Saif-Elnasr M, Soliman AF. Platelet-rich plasma as a potential therapeutic approach against lead nitrate- and/or gamma radiation-induced hepatotoxicity. Environ Sci Pollut Res. 2018;25(34):34460–34471. doi: 10.1007/s11356-018-3366-3.
  • Saif-Elnasr M, Abdel Fattah SM, Swailam HM. Treatment of hepatotoxicity induced by γ-radiation using platelet-rich plasma and/or low molecular weight chitosan in experimental rats. Int J Radiat Biol. 2019;95(11):1517–1528. doi: 10.1080/09553002.2019.1642538.
  • Soliman AF, Saif-Elnasr M, Abdel Fattah SM. Platelet-rich plasma ameliorates gamma radiation-induced nephrotoxicity via modulating oxidative stress and apoptosis. Life Sci. 2019;219:238–247. doi: 10.1016/j.lfs.2019.01.024.
  • Barnes P, Karin M. Nuclear factor-k B: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336(15):1066–1071. doi: 10.1056/NEJM199704103361506.
  • Reyes JL, Molina-Jijon E, Rodriguez-Munoz R, et al. Tight junction proteins and oxidative stress in heavy metals-induced nephrotoxicity. Biomed Res Int. 2013;2013:730789. doi: 10.1155/2013/730789.
  • Mansour HH. Protective role of carnitine ester against radiation-induced oxidative stress in rats. Pharmacol. Res. 2006;54(3):165–171. doi: 10.1016/j.phrs.2006.04.003.
  • Abdel-Salam OME, Youness ER, Mohammed NA, et al. Citicoline protects against tramadol-induced oxidative stress and organ damage. ROS. 2019;7(20):106–120. doi: 10.20455/ros.2019.823.
  • Galal AF, Salem LM, Hassanane MM, et al. Citicoline ameliorates neuro- and genotoxicity induced by acute malathion intoxication in rats. J Biosci Appl Res. 2019;5(2):246–261. doi: 10.21608/jbaar.2019.146800.
  • De La Cruz JP, Villalobos MA, Cuerda MA, et al. Effects of S-adenosyl-L-methionine on lipid peroxidation and glutathione levels in rat brain slices exposed to reoxygenation after oxygen-glucose deprivation. Neurosci Lett. 2002;318(2):103–107. doi: 10.1016/s0304-3940(01)02475-2.
  • Adibhatla RM, Hatcher JF, Dempsey RJ. Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia. Stroke. 2001;32(10):2376–2381. doi: 10.1161/hs1001.096010.
  • Qian K, Gu Y, Zhao Y, et al. Citicoline protects brain against closed head injury in rats through suppressing oxidative stress and calpain over-activation. Neurochem Res. 2014;39(7):1206–1218. doi: 10.1007/s11064-014-1299-x.
  • Chen E, Staudt LM, Green AR. Janus kinase deregulation in leukemia and lymphoma. Immunity. 2012;36(4):529–541. doi: 10.1016/j.immuni.2012.03.017.
  • Becerra-Díaz M, Valderrama-Carvajal H, Terrazas LI. Signal Transducers and Activators of Transcription (STAT) family members in helminth infections. Int J Biol Sci. 2011;7(9):1371–1381. doi: 10.7150/ijbs.7.1371.
  • Zhou G, Xu Y, He B, et al. Ionizing radiation modulates vascular endothelial growth factor expression through STAT3 signaling pathway in rat neonatal primary astrocyte cultures. Brain Behav. 2020;10(4):e01529. doi: 10.1002/brb3.1529.
  • Zhou H, Zhang Z, Wei H, et al. Activation of STAT3 is involved in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptors in rats. Brain Res. 2013;1529:154–164. doi: 10.1016/j.brainres.2013.07.006.
  • Gao L, Li FS, Chen XH, et al. Radiation induces phosphorylation of STAT3 in a dose- and time-dependent manner. Asian Pac. J. Cancer Prev. 2014;15(15):6161–6164.
  • Galal SM, Abdel-Rafei MK, Hasan HF. Cholinergic and cytoprotective signaling cascades mediate the mitigative effect of erythropoietin on acute radiation syndrome. Can J Physiol Pharmacol. 2018;96(5):442–458. doi: 10.1139/cjpp-2017-0578.
  • Huynh J, Etemadi N, Hollande F, et al. The JAK/STAT3 axis: a comprehensive drug target for solid malignancies. Semin Cancer Biol. 2017;45:13–22. doi: 10.1016/j.semcancer.2017.06.001.
  • Severgnini M, Takahashi S, Rozo LM, et al. Activation of the STAT pathway in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2004;286(6):L1282–L1292. doi: 10.1152/ajplung.00349.2003.
  • Xu Z, Wu H, Zhang H, et al. Interleukins 6/8 and cyclooxygenase-2 release and expressions are regulated by oxidative stress-JAK2/STAT3 signaling pathway in human bronchial epithelial cells exposed to particulate matter ≤2.5 μm. J Appl Toxicol. 2020;40(9):1210–1218. doi: 10.1002/jat.3977.
  • Grieb P, Rejdak R. Pharmacodynamics of citicoline relevant to the treatment of glaucoma. J Neurosci Res. 2002;67(2):143–148. doi: 10.1002/jnr.10129.
  • Dixon CE, Ma X, Marion DW. Effects of CDP-choline treatment on neurobehavioral deficits after TBI and on hippocampal and neocortical acetylcholine release. J Neurotrauma. 1997;14(3):161–169. doi: 10.1089/neu.1997.14.161.
  • Castagna A, Cotroneo AM, Ruotolo G, et al. The citirivad study: citicoline plus rivastigmine in elderly patients affected with dementia study. Clin Drug Investig. 2016;36(12):1059–1065. doi: 10.1007/s40261-016-0454-3.
  • Vida G, Peña G, Deitch EA, et al. α7-Cholinergic receptor mediates vagal induction of splenic norepinephrine. J Immunol. 2011;186(7):4340–4346. doi: 10.4049/jimmunol.1003722.
  • Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005;4(8):673–684. doi: 10.1038/nrd1797.
  • Galvis G, Lips KS, Kummer W. Expression of nicotinic acetylcholine receptors on murine alveolar macrophages. J Mol Neurosci. 2006;30(1–2):107–108. doi: 10.1385/JMN:30:1:107.
  • Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–388. doi: 10.1038/nature01339.
  • Wang H, Liao H, Ochani M, et al. Cholinergic agonists inhibit HMGBl release and improve survival in experimental sepsis. Nat Med. 2004;10(11):1216–1221. doi: 10.1038/nm1124.
  • Saeed RW, Varma S, Peng-Nemeroff T, et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med. 2005;201(7):1113–1123. doi: 10.1084/jem.20040463.
  • Huston JM, Ochani M, Rosas-Ballina M, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med. 2006;203(7):1623–1628. doi: 10.1084/jem.20052362.
  • Peña G, Cai B, Deitch EA, et al. JAK2 inhibition prevents innate immune responses and rescues animals from sepsis. J Mol Med (Berl). 2010a;88(8):851–859. doi: 10.1007/s00109-010-0628-z.
  • Peña G, Cai B, Liu J, et al. Unphosphorylated STAT3 modulates alpha 7 nicotinic receptor signaling and cytokine production in sepsis. Eur J Immunol. 2010;40(9):2580–2589. doi: 10.1002/eji.201040540.
  • Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol. 2006;6(4):318–328. doi: 10.1038/nri1810.
  • Marino F, Cosentino M. Adrenergic modulation of immune cells: an update. Amino Acids. 2013;45(1):55–71. doi: 10.1007/s00726-011-1186-6.
  • Elenkov IJ, Wilder RL, Chrousos GP, et al. The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52(4):595–638.
  • Miksa M, Das P, Zhou M, et al. Pivotal role of the alpha(2A)-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis. PLoS One. 2009;4(5):e5504. doi: 10.1371/journal.pone.0005504.
  • Grisanti LA, Woster AP, Dahlman J, et al. α1-adrenergic receptors positively regulate Toll-like receptor cytokine production from human monocytes and macrophages. J Pharmacol Exp Ther. 2011;338(2):648–657. doi: 10.1124/jpet.110.178012.
  • Fahim TM, Mohamed MAE, Abdelrahman SSM, et al. Beneficial effect of rosuvastatin therapy on spleen injury induced by gamma irradiation in rats: targeting Nrf2/EPRE pathway. Dose-Response. 2023;21(2):155932582311799. doi: 10.1177/15593258231179900.
  • Azab KS, Maarouf RE, Abdel-Rafei MK, et al. Withania somnifera (Ashwagandha) root extract counteract acute and chronic impact of γ-radiation on liver and spleen of rats. Hum Exp Toxicol. 2022;41:9603271221106344. doi: 10.1177/09603271221106344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.