Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 29, 2013 - Issue 8
444
Views
23
CrossRef citations to date
0
Altmetric
Articles

The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel

, , &
Pages 939-952 | Received 15 May 2013, Accepted 17 Jun 2013, Published online: 01 Aug 2013

References

  • Ashton SA, Miller JDA, King RA. 1973. Corrosion of ferrous metals in batch cultures of nitrate-reducing bacteria. Br Corros J. 8 : 185–189.
  • ASTM. 2011a. Standard test methods for determining average grain size [standard E112–10]. West Conshohocken (PA): ASTM International. ASTM handbook 3.01 metals–mechanical testing; elevated and low-temperature tests; metallography; p. 287–312.
  • ASTM. 2011b. Standard practice for preparing, cleaning, and evaluating corrosion test specimens [standard G1–03]. West Conshohocken (PA): ASTM International. ASTM handbook 3.02 corrosion of metals; wear and erosion; p. 20–28.
  • Beech, I. B., Gaylarde, C. C. 1991. Attachment of Pseudomonas fluorescens and Desulfovibrio desulfuricans to mild and stainless steel – first step in biofilm formation. In: Sequeira CAC, editor. Microbial corrosion, European federation of corrosion publications, Proceedings of the 2nd International EFC Workshop; 1991 March 3–6; Sesimbra (Portugal). p. 61–66.
  • Borenstein SW. 1994. Microbiologically influenced corrosion handbook. Cambridge: Woodhead.
  • Clayton JQ, Knott JF. 1976. Segregation effects and the toughness of high-strength steels. London: Cambridge University Department of Metallurgy and Materials Science.
  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. 1987. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 41 : 435–464.
  • Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP. 2012. Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci. 179–182 : 142–149.
  • Flemming HC. 2002. Biofouling in water systems – cases, causes and countermeasures. Appl Microbiol Biotechnol. 59 : 629–640.
  • Franklin M, White DC, Little BJ, Ray R, Pope R. 2000. The role of bacteria in pit propagation of carbon steel. Biofouling. 15 : 13–23.
  • Geesey GG, Gillis RJ, Avci R, Daly D, Hamilton M, Shope P, Harkin G. 1996. The influence of surface features on bacterial colonization and subsequent substratum chemical changes of 316L stainless steel. Corros Sci. 38 : 73–94.
  • George RP, Muraleedharan P, Sreekumari KR, Khatak HS. 2003. Influence of surface characteristics and microstructure on adhesion of bacterial cells onto a type 304 stainless steel. Biofouling. 19 : 1–8.
  • Ibars JR, Moreno DA, Ranninger C. 1992. MIC of stainless steels: a technical review on the influence of microstructure. Int Biodeterior Biodegrad. 29 : 343–355.
  • ISO. 1996. Standard 4288. Geometrical Product Specifications (GPS) – surface texture: profile method – rules and procedures for the assessment of surface texture. Available from: http://www.iso.org/iso/home.html
  • Kielemoes J, Hammes F, Verstraete W. 2000. Measurement of microbial colonisation of two types of stainless steel. Environ Technol. 21 : 831–843.
  • Little BJ, Lee JS. 2007. Microbiologically influenced corrosion. Hoboken, NJ: Wiley.
  • Little BJ, Ray RI, Wagner PA, Jones-Meehan J, Lee CC, Mansfeld F. 1999. Spatial relationships between marine bacteria and localized corrosion on polymer coated steel. Biofouling. 13 : 301–321.
  • Little BJ, Wagner P, Angell P, White D. 1996. Correlation between localized anodic areas and Oceanospirillum biofilms on copper. Int Biodeterior Biodegrad. 37 : 159–162.
  • Mara DD, Williams DJA. 1972. Influence of the microstructure of ferrous metals on the rate of microbial corrosion. Br Corros J. 7 : 139–142.
  • Medilanski E, Kaufmann K, Wick LY, Wanner O, Harms H. 2002. Influence of the surface topography of stainless steel on bacterial adhesion. Biofouling. 18 : 193–203.
  • Moreno DA, Ibars JR, Beech IB, Gaylarde CC. 1993. Biofilm formation on mild steel coupons by Pseudomonas and Desulfovibrio. Biofouling. 7 : 129–139.
  • Moreno DA, Ibars JR, Ranninger C. 2000. Influence of microstructure on the microbial corrosion behaviour of stainless steels. Revista de Metalurgia (Madrid). 36 : 266–278.
  • Mueller RF, Characklis WG, Jones WL, Sears JT. 1992. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis. Biotechnol Bioeng. 39 : 1161–1170.
  • Noel, J. J. 2003. Corrosion: fundamentals, testing, and protection. Effect of metallurgical variables on aqueous corrosion. ASM Int. 13: 258–265.
  • Shoesmith DW. 1992. Corrosion: effect of metallurgical variables on aqueous corrosion. ASM Int. 13 : 73–81.
  • Sieuwerts S, De Bok FAM, Mols E, De Vos WM, Van Hylckama Vlieg JET. 2008. A simple and fast method for determining colony forming units. Lett Appl Microbiol. 47 : 275–278.
  • Singh AV, Vyas V, Patil R, Sharma V, Scopelliti PE, Bongiorno G, Podestà A, Lenardi C, Gade WN, Milani P. 2011. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS ONE. 6 : 1–12.
  • Sreekumari KR, Nandakumar K, Kikuchi Y. 2001. Bacterial attachment to stainless steel welds: significance of substratum microstructure. Biofouling. 17 : 303–316.
  • Sreekumari KR, Ozawa M, Tohmoto K, Kikuchi Y. 2000. Attachment of bacteria to carbon steel weldments. Trans JWRI. 29 : 67–70.
  • Sreekumari KR, Sato Y, Kikuchi Y. 2005. Antibacterial metals – a viable solution for bacterial attachment and microbiologically influenced corrosion. Mater Trans. 46 : 1636–1645.
  • Stein, A. A. 1991. Metallurgical factors affecting the resistance of 300 series stainless steel to microbiologically influenced corrosion. In: Sequeira CAC, editor. Microbial corrosion, European federation of corrosion publications, Proceedings of the 2nd International EFC Workshop; 1991 March 3–6; Sesimbra (Portugal). p. 67–80.
  • Truong VK, Lapovok R, Estrin YS, Rundell S, Wang JY, Fluke CJ, Crawford RJ, Ivanova EP. 2010. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials. 31 : 3674–3683.
  • Truong VK, Rundell S, Lapovok R, Estrin Y, Wang JY, Berndt CC, Barnes DG, Fluke CJ, Crawford RJ, Ivanova EP. 2009. Effect of ultrafine-grained titanium surfaces on adhesion of bacteria. Appl Microbiol Biotechnol. 83 : 925–937.
  • Verhoeven JD. 2007. Steel metallurgy for the non-metallurgist. Materials park, OH: ASM International.
  • Wade SA, Mart PL, Trueman AR. 2011. Microbiologically influenced corrosion in maritime vessels. Corros Mater. 36 : 68–79.
  • Walsh, D. 1999. The implication of thermomechanical processing for microbiologically influenced corrosion. Corrosion/1999, Paper No 188. San Antonio (TX): NACE International.
  • Walsh D, Pope D, Danford M, Huff T. 1993. Effect of microstructure on microbiologically influenced corrosion. JOM. 45 : 26–30.
  • Walsh, D., Willis, E., Van Diepen, T., Sanders, J. 1994. The effect of microstructure on microbial interaction with metals – accent welding. Corrosion/1994, Paper No 612. Houston (TX): NACE International.
  • Yuan SJ, Pehkone SO. 2009. AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater. Corros Sci. 51 : 1372–1385.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.