Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 30, 2014 - Issue 3
534
Views
35
CrossRef citations to date
0
Altmetric
Articles

Identification of key factors in Accelerated Low Water Corrosion through experimental simulation of tidal conditions: influence of stimulated indigenous microbiota

, , , , , , , & show all
Pages 281-297 | Received 18 Jun 2013, Accepted 06 Nov 2013, Published online: 23 Jan 2014

References

  • Almahamedh HH. 2013. Sulfate reducing bacteria influenced calcium carbonate precipitation. In: Proceeding of NACE Corrosion 2013. Paper No. 2101. Orlando (FL): NACE International.
  • ASTM G1-03. 2011. Standard practice for preparing, cleaning, and evaluating corrosion test specimens. West Conshohocken (PA): ASTM International.
  • Baorong H, Bin X. 2003. Study on corrosion simulation device for marine steel structure. Bull Mater Sci. 26:307–310.
  • Bazylinski DA, Dean AJ, Williams TJ, Long LK, Middleton SL, Dubbels BL. 2004. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol. 182:373–387.
  • Beech IB, Campbell SA. 2008. Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment. Electrochim Acta. 54:14–21.
  • Beech IB, Sunner JA, Hiraoka K. 2005. Microbe-surface interactions in biofouling and biocorrosion processes. Int Microbiol. 8:157–168.
  • Beech IB, Sunny Cheung CW, Patrick Chan CS, Hill MA, Franco R, Lino A-R. 1994. Study of parameters implicated in the biodeterioration of mild steel in the presence of different species of sulphate-reducing bacteria. Int Biodeterior Biodegrad. 34:289–303.
  • Benedetti A, Magagnin L, Passaretti F, Chelossi E, Faimali M, Montesperelli G. 2007. Calcareous deposit precipitation on cathodically polarized carbon steel in natural seawater exposed to daylight cycles. In: Proceedings of the International Society of Offshore and Polar Engineers. Lisbon (P): ISOP. p. 3307–3312
  • Castaneda H, Benetton XD. 2008. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corros Sci. 50:1169–1183.
  • Chen H, Athar R, Zheng G, Williams HN. 2011. Prey bacteria shape the community structure of their predators. Int Soc Microb Ecol. 5:1314–1322.
  • Cheng KY, Ho G, Cord-Ruwisch R. 2010. Anodophilic biofilm catalyzes cathodic oxygen reduction. Environ Sci Technol. 44:518–525.
  • Cornell RM, Schwertmann U. 2006. The iron oxides: structure, properties, reactions, occurrences, and uses. 2nd ed. Weinheim: Wiley-VCH.
  • Dang H, Chen R, Wang L, Shao S, Dai L, Ye Y, Guo L, Huang G, Klotz MG. 2011. Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environ Microbiol. 13:3059–3074.
  • Degerman R, Dinasquet J, Riemann L, De Luna SS, Andersson A. 2012. Effect of resource availability on bacterial community responses to increased temperature. Aquat Microb Ecol. 68:131–142.
  • DeLong EF, Frankel RB, Bazylinski DA. 1993. Multiple evolutionary origins of magnetotaxis in bacteria. Science. 259:803–806.
  • Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F. 2004. Iron corrosion by novel anaerobic microorganisms. Nature. 427:829–832.
  • Duncan K, Perez-Ibarra B, Jenneman G, Harris J, Webb R, Sublette K. 2013. The effect of corrosion inhibitors on microbial communities associated with corrosion in a model flow cell system. Appl Microbiol Biotechnol. [Internet];12. Available from: http://link.springer.com/article/10.1007%2Fs00253-013-4906-x.
  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev. 96:141–162.
  • Dzierzewicz Z, Cwalina B, Chodurek E, Wilczok T. 1997. The relationship between microbial metabolic activity and biocorrosion of carbon steel. Res Microbiol. 148:785–793.
  • Elbeik S, Tseung ACC, Mackay AL. 1986. The formation of calcareous deposits during the corrosion of mild steel in sea water. Corros Sci. 26:669–680.
  • Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F. 2012. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol. 14:1772–1787.
  • Erable B, Vandecandelaere I, Faimali M, Delia ML, Etcheverry L, Vandamme P, Bergel A. 2010. Marine aerobic biofilm as biocathode catalyst. Bioelectrochemistry. 78:51–56.
  • Fang H, Young D, Nesic S. 2008. Corrosion of mild steel in presence of elemental sulfur. In: Proceedings of NACE Corrosion 2008. Paper No. 08637. New Orleans (LO): NACE International.
  • Garrity GM, Bell JA, Lilburn T. 2005. Family III: Nitrospinaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, editors. Bergey’s manual of systematic bacteriology, 2nd ed., Vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). New York (NY): Springer; p. 999–1003.
  • Gehrke T, Sand W. 2003. Interactions between microorganisms and physiochemical factors cause MIC of steel pilings in harbors (ALWC). In: Proceedings of NACE Corrosion 2003. Paper No. 03557. Houston (TX): NACE International.
  • Génin JMR, Olowe AA, Resiak B, Confente M, Rollet-Benbouzid N, L’Haridon S, Prieur D. 1994. Products obtained by microbially-induced corrosion of steel in a marine environment: role of green rust two. Hyperfine Interact. 93:1807–1812.
  • Gittel A, Seidel M, Kuever J, Galushko AS, Cypionka H, Könneke M. 2010. Desulfopila inferna sp. nov., a sulfate-reducing bacterium isolated from the subsurface of a tidal sand-flat. Int J Syst Evol Microbiol. 60:1626–1630.
  • Gubner R. 1998. Biofilms and accelerated low-water corrosion in carbon steel piling in tidal waters [PhD thesis]. Portsmouth: University of Portsmouth.
  • Gubner R, Beech I. 1999. Statistical assessment of the risk of accelerated low water corrosion in the marine environment. In: Proceeding of 1999 NACE Corrosion Conference. Paper No. 318. San Antonio (TX): NACE International.
  • Hicks RE. 2007. Structure of bacterial communities associated with accelerated corrosive loss of port transportation infrastructure. Final Report. Duluth: Great Lakes Maritime Research Institute.
  • Holmes DE, Bond DR, Lovley DR. 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol. 70:1234–1237.
  • Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR. 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol. 48:178–190.
  • Huber T, Faulkner G, Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics. 20:2317–2319.
  • Imhoff J. 2005. Chromatiales ord. nov. In: Brenner D, Krieg N, Staley J, Garrity G, Boone D, Vos P, Goodfellow M, Rainey F, Schleifer K-H, editors. Bergey’s Manual® of systematic bacteriology. Vol. 2, The Proteobacteria, Part B: The Gammaproteobacteria. New York (NY): Springer; p. 1–59.
  • Jeffrey RJ, Melchers RE. 2010. The effect of microbiological involvement on the topography of corroding mild steel in coastal seawater. In: Proceeding of 2010 NACE Corrosion Conference. Paper No. 10224. San Antonio (TX): NACE International.
  • Johnston SL, Voordouw G. 2012. Sulfate-reducing bacteria lower sulfur-mediated pitting corrosion under conditions of oxygen ingress. Environ Sci Technol. 46:9183–9190.
  • Kjellerup BV, Kjeldsen KU, Lopes F, Abildgaard L, Ingvorsen K, Frølund B, Sowers KR, Nielsen PH. 2009. Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions. Biofouling. 25:727–737.
  • Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. 2001. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 29:181–184.
  • Könneke M, Kuever J, Galushko A, Jorgensen BB. 2013. Desulfoconvexum algidum gen. nov., sp. nov., a psychrophilic sulfate-reducing bacterium isolated from a permanently cold marine sediment. Int J Syst Evol Microbiol. 63:959–964.
  • Kuang F, Wang J, Yan L, Zhang D. 2007. Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel. Electrochim Acta. 52:6084–6088.
  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23:2947–2948.
  • Lata S, Sharma C, Singh AK. 2012. Comparison of biocorrosion due to Desulfovibrio desulfuricans and Desulfotomaculum nigrificans bacteria. J Mater Eng Perform. 22:463–469.
  • Lee J, Ray R, Lemieux E, Falster A, Little B. 2004. An evaluation of carbon steel corrosion under stagnant seawater conditions. Biofouling. 20:237–247.
  • Leloup J, Quillet L, Berthe T, Petit F. 2006. Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol. 55:230–238.
  • Lin B, Hyacinthe C, Bonneville S, Braster M, Van Cappellen P, Röling WFM. 2007. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environ Microbiol. 9:1956–1968.
  • Little BJ, Lee JS. 2006. Case histories. In: Microbiologically influenced corrosion. Hoboken (NJ): Wiley; p. 150–216.
  • Little BJ, Lee JS, Ray RI. 2008. The influence of marine biofilms on corrosion: a concise review. Electrochim Acta. 54:2–7.
  • Lovley DR, Holmes DE, Nevin KP. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol. 49:219–286.
  • Machuca LL, Bailey SI, Gubner R, Watkin ELJ, Ginige MP, Kaksonen AH, Heidersbach K. 2013. Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater. Corros Sci. 67:242–255.
  • Marty F, Ghiglione JF, Païssé S, Gueuné H, Quillet L, van Loosdrecht MC, Muyzer G. 2012. Evaluation and optimization of nucleic acid extraction methods for the molecular analysis of bacterial communities associated with corroded carbon steel. Biofouling. 28:363–380.
  • Marty F, Loosdrecht MV, Muyzer G. 2014. Case study: molecular characterization of microbial communities associated with accelerated low water corrosion (ALWC) on European harbour structures. In: Skovhus TL, Caffrey S, Hubert CRJ, editors. Molecular methods and applications in microbiology. Norfolk: Caister Academic Press; p. 55–66.
  • McBeth JM, Fleming EJ, Emerson D. 2013. The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA. Environ Microbiol Rep. 5:453–463.
  • McBeth JM, Little BJ, Ray RI, Farrar KM, Emerson D. 2011. Neutrophilic iron-oxidizing ‘Zetaproteobacteria’ and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol. 77:1405–1412.
  • Melchers RE. 2009. Experiments, science and intuition in the development of models for the corrosion of steel infrastructure. In: Proceeding of Conference Corrosion and Prevention 2009: The Management of Infrastructure Deterioration. Paper No. 9064. Coffs Harbour (NSW).
  • Melchers RE. 2013. Influence of dissolved inorganic nitrogen on accelerated low water corrosion of marine steel piling. Corrosion. 69:95–103.
  • Melchers RE, Jeffrey R. 2012. Corrosion of long vertical steel strips in the marine tidal zone and implications for ALWC. Corros Sci. 65:26–36.
  • Moulin JM, Marsh E, Chau WT, Karius R, Beech IB, Gubner R, Raharinaivo A. 2001. Prevention of accelerated low corrosion on steel piling structures due to microbially influenced corrosion mechanisms. Brussels: European Commission. (Report EUR 20043 ENECSC Steel Publications).
  • NACE: corrosion in maritime industry [Internet]. c2013. Houston (TX): NACE International; [cited 2013]. Available from: http://www.nace.org/CorrosionCentral/Industries/Maritime-Industry
  • Païssé S, Ghiglione JF, Marty F, Abbas B, Gueuné H, Amaya JMS, Muyzer G, Quillet L. 2013. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures. Appl Microbiol Biotechnol. 97:7493–7504.
  • [PIANC] International Navigation Association. 2005. Report of the working group 44 of the Maritime Navigation Commission. Brussels: PIANC.
  • Pineau S, Sabot R, Quillet L, Jeannin M, Caplat C, Dupont-Morral I, Refait P. 2008. Formation of the Fe(II–III) hydroxysulphate green rust during marine corrosion of steel associated to molecular detection of dissimilatory sulphite-reductase. Corros Sci. 50:1099–1111.
  • Prange A, Chauvistré R, Modrow H, Hormes J, Trüper HG, Dahl C. 2002. Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiology. 148:267–276.
  • Pruesse E, Peplies J, Glöckner FO. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 28:1823–1829.
  • Ray RI, Lee JS, Little BJ, Gerke TL. 2011. The anatomy of tubercles on steel. In: Proceedings of the NACE Corrosion 2011 Conference. Paper No. 11217. Houston (TX): NACE International.
  • Redfield AC. 1958. The biological control of chemical factors in the environment. Am Sci. 46:205–221.
  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, et al.. 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature. 406:989–992.
  • Starkey RL. 1938. A study of spore formation and other morphological characteristics of Vibrio desulfuricans. Arch Microbiol. 9:268–304.
  • Sun M, Mu ZX, Chen YP, Sheng GP, Liu XW, Chen YZ, Zhao Y, Wang HL, Yu HQ, Wei L, Ma F. 2009. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Environ Sci Technol. 43:3372–3377.
  • Sunny Cheung CW, Walsh FC, Campbell SA, Chao WT, Beech IB. 1994. Microbial contributions to the marine corrosion of steel piling. Int Biodeterior Biodegrad. 34:259–274.
  • Taheri RA, Nouhi A, Hamedi J, Javaherdashti R. 2005. Comparison of corrosion rates of some steels in batch and semi-continuous cultures of sulfate-reducing bacteria. Asian J Microbiol Biotechnol Environ Sci. 7:5–8.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 28:2731–2739.
  • van Loosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ. 1995. Biofilm structures. Water Sci Technol. 32:35–43.
  • Venzlaff H, Enning D, Srinivasan J, Mayrhofer KJJ, Hassel AW, Widdel F, Stratmann M. 2013. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci. 66:88–96.
  • Wan Y, Zhang D, Liu H, Li Y, Hou B. 2010. Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions. Electrochim Acta. 55:1528–1534.
  • Xiaodong Z, Guangfeng X, Yang J. 2011. Comparative study on corrosion of mild steel in natural and simulated marine corrosion. Appl Mech Mater. 66–68:1828–1831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.