Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 30, 2014 - Issue 5
865
Views
20
CrossRef citations to date
0
Altmetric
Articles

A three-species biofilm model for the evaluation of enamel and dentin demineralization

, , , , &
Pages 579-588 | Received 20 Nov 2013, Accepted 27 Feb 2014, Published online: 14 Apr 2014

References

  • Aires CP, Del Bel Cury AA, Tenuta LM, Klein MI, Koo H, Duarte S, Cury JA. 2008. Effect of starch and sucrose on dental biofilm formation and on root dentin demineralization. Caries Res. 42:380–386.10.1159/000154783
  • Arthur RA, Waeiss RA, Hara AT, Lippert F, Eckert GJ, Zero DT. 2013. A defined-multispecies microbial model for studying enamel caries development. Caries Res. 47:318–324.10.1159/000347050
  • Bizhang M, Ellerbrock B, Preza D, Raab W, Singh P, Beikler T, Henrich B, Zimmer S. 2011. Detection of nine microorganisms from the initial carious root lesions using a TaqMan-based real-time PCR. Oral Dis. 17:642–652.10.1111/odi.2011.17.issue-7
  • Bowen WH, Koo H. 2011. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 45:69–86.10.1159/000324598
  • Ccahuana-Vásquez RA, Tabchoury CP, Tenuta LM, Del Bel Cury AA, Vale GC, Cury JA. 2007. Effect of frequency of sucrose exposure on dental biofilm composition and enamel demineralization in the presence of fluoride. Caries Res. 41:9–15.10.1159/000096100
  • Ccahuana-Vásquez RA, Cury JA. 2010. S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization. Braz Oral Res. 24:135–141.10.1590/S1806-83242010000200002
  • Cury JA, Rebelo MA, Del Bel Cury AA, Derbyshire MT, Tabchoury CP. 2000. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res. 34:491–497.10.1159/000016629
  • Duarte S, Klein MI, Aires CP, Cury JA, Bowen WH, Koo H. 2008. Influences of starch and sucrose on Streptococcus mutans biofilms. Oral Microbiol Immunol. 23:206–212.10.1111/j.1399-302X.2007.00412.x
  • Giacaman RA, Muñoz MJ, Ccahuana-Vasquez RA, Muñoz-Sandoval C, Cury JA. 2012. Effect of fluoridated milk on enamel and root dentin demineralization evaluated by a biofilm caries model. Caries Res. 46:460–466.
  • Giertsen E, Arthur RA, Guggenheim B. 2011. Effects of xylitol on survival of mutans streptococci in mixed-six-species in vitro biofilms modelling supragingival plaque. Caries Res. 45:31–39.10.1159/000322646
  • Gold OG, Jordan HV, Van Houte J. 1973. A selective medium for Streptococcus mutans. Arch Oral Biol. 18:1357–1364.10.1016/0003-9969(73)90109-X
  • Guggenheim B, Guggenheim M, Gmür R, Giertsen E, Thurnheer T. 2004. Application of the Zürich biofilm model to problems of cariology. Caries Res. 38:212–222.10.1159/000077757
  • Gutiérrez de Annan S, Ruíz de Valladares RE, Benito de Cárdenas IL. 1997. Mitis salivarius-bacitracin 10% sacarose agar for oral streptococci and Streptococcus mutans counts. Acta Odontol Latinoam. 10:47–53.
  • Klein MI, Duarte S, Xiao J, Mitra S, Foster TH, Koo H. 2009. Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development. Appl Environ Microbiol. 75:837–841.10.1128/AEM.01299-08
  • Klein MI, Xiao J, Lu B, Delahunty CM, Yates JR 3rd, Koo H. 2012. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics. PLoS One. 7:e45795.10.1371/journal.pone.0045795
  • Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. 2006. Bacterial interactions and successions during plaque development. Periodontol 2000. 42:47–79.10.1111/prd.2006.42.issue-1
  • Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. 2010. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 8:471–480.10.1038/nrmicro2381
  • Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, Vacca-Smith AM, Bowen WH. 2003. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother. 52:782–789.10.1093/jac/dkg449
  • Koo H, Xiao J, Klein MI, Jeon JG. 2010. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol. 192:3024–3032.10.1128/JB.01649-09
  • Kreth J, Zhang Y, Herzberg MC. 2008. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol. 190:4632–4640.10.1128/JB.00276-08
  • Kummer KM, Taylor EN, Durmas NG, Tarquinio KM, Ercan B, Webster TJ. 2013. Effects of different sterilization techniques and varying anodized TiO2 nanotube dimensions on bacteria growth. J Biomed Mater Res B Appl Biomater. 101:677–688.10.1002/jbm.b.v101b.5
  • Li J, Helmerhorst EJ, Leone CW, Troxler RF, Yaskell T, Haffajee AD, Socransky SS, Oppenheim FG. 2004. Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol. 97:1311–1318.10.1111/jam.2004.97.issue-6
  • Loesche WJ. 1986. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 50:353–380.
  • Paes Leme AF, Koo H, Bellato CM, Bedi G, Cury JA. 2006. The role of sucrose in cariogenic dental biofilm formation--new insight. J Dent Res. 85:878–887.10.1177/154405910608501002
  • Ribeiro CC, Tabchoury CP, Del Bel Cury AA, Tenuta LM, Rosalen PL, Cury JA. 2005. Effect of starch on the cariogenic potential of sucrose. Br J Nutr. 94:44–50.10.1079/BJN20051452
  • Saravia ME, Nelson-Filho P, Silva RA, De Rossi A, Faria G, Silva LA, Emilson CG. 2013. Recovery of mutans streptococci on MSB, SB-20 and SB-20 M agar media. Arch Oral Biol. 58:311–316.10.1016/j.archoralbio.2012.10.010
  • Suzuki N, Nakano Y, Yoshida A, Yamashita Y, Kiyoura Y. 2004. Real-time TaqMan PCR for quantifying oral bacteria during biofilm formation. J Clin Microbiol. 42:3827–3830.10.1128/JCM.42.8.3827-3830.2004
  • Tanzer JM, Thompson A, Sharma K, Vickerman MM, Haase EM, Scannapieco FA. 2012. Streptococcus mutans out-competes Streptococcus gordonii in vivo. J Dent Res. 91:513–519.10.1177/0022034512442894
  • ten Cate JM. 1999. Current concepts on the theories of the mechanism of action of fluoride. Acta Odontol Scand. 57:325–329.10.1080/000163599428562
  • Tenuta LM, Cury JA. 2010. Fluoride: its role in dentistry. Braz Oral Res. 24:9–17.10.1590/S1806-83242010000500003
  • Thurnheer T, Gmür R, Giertsen E, Guggenheim B. 2001. Automated fluorescent in situ hybridization for the specific detection and quantification of oral streptococci in dental plaque. J Microbiol Methods. 44:39–47.10.1016/S0167-7012(00)00226-8
  • White DJ. 1987. Reactivity of fluoride dentifrices with artificial caries. I. Effects on early lesions: F uptake, surface hardening and remineralization. Caries Res. 21:126–140.10.1159/000261013
  • Wilson K 2001. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. Chapter 2:Unit 2.4.
  • Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JR 3rd, Heydorn A, Koo H. 2012. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog. 8:e1002623.10.1371/journal.ppat.1002623
  • Yoshida A, Suzuki N, Nakano Y, Kawada M, Oho T, Koga T. 2003. Development of a 5′ nuclease-based real-time PCR assay for quantitative detection of cariogenic dental pathogens Streptococcus mutans and Streptococcus sobrinus. J Clin Microbiol. 41:4438–4441.10.1128/JCM.41.9.4438-4441.2003
  • Zhang X, Senpuku H. 2013. Dynamic changes in the initial colonization of Actinomyces naeslundii and Streptococcus gordonii using a new animal model. Jpn J Infect Dis. 66:11–16.10.7883/yoken.66.11
  • Zheng L, Itzek A, Chen Z, Kreth J. 2011. Environmental influences on competitive hydrogen peroxide production in Streptococcus gordonii. Appl Environ Microbiol. 77:4318–4328.10.1128/AEM.00309-11
  • Zylber LJ, Jordan HV. 1982. Development of a selective medium for detection and enumeration of Actinomyces viscosus and Actinomyces naeslundii in dental plaque. J Clin Microbiol. 15:253–259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.