Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 30, 2014 - Issue 7
1,137
Views
83
CrossRef citations to date
0
Altmetric
Articles

Antifouling properties of zinc oxide nanorod coatings

, , &
Pages 871-882 | Received 01 Apr 2014, Accepted 02 Jul 2014, Published online: 11 Aug 2014

References

  • Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, Chai Z. 2010. Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res. 12:1645–1654.10.1007/s11051-009-9740-9
  • Baruah S, Dutta J. 2009. pH-dependent growth of zinc oxide nanorods. J Cryst Growth. 311:2549–2554.10.1016/j.jcrysgro.2009.01.135
  • Baruah S, Jaisai M, Dutta J. 2012. Development of a visible light active photocatalytic portable water purification unit using ZnO nanorods. Catal Sci Technol. 2:918–921.10.1039/c2cy20033c
  • Baruah S, Jaisai M, Imani R, Nazhad MM, Dutta J. 2010. Photocatalytic paper using zinc oxide nanorods. Sci Tech Adv Mater. 11:1–7.
  • Baruah S, Sinha SS, Ghosh B, Pal SK, Raychaudhuri AK, Dutta J. 2009. Photoreactivity of ZnO nanoparticles in visible light: effect of surface states on electron transfer reaction. J Appl Phys. 105:1–6.
  • Beigbeder A, Degee P, Conlan SL, Mutton RJ, Clare AS, Pettitt ME, Callow ME, Callow JA, Dubois P. 2008. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling. 24:291–302.10.1080/08927010802162885
  • Bianco É, Rogers R, Teixeira V, Pereira R. 2009. Antifoulant diterpenes produced by the brown seaweed Canistrocarpus cervicornis. J Appl Phycol. 21:341–346.10.1007/s10811-008-9374-9
  • Bucaro MA, Vasquez Y, Hatton BD, Aizenberg J. 2012. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano. 6:6222–6230.10.1021/nn301654e
  • Byrne D, McGlynn E, Henry MO, Kumar K, Hughes G. 2010. A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays. Thin Solid Films. 518:4489–4492.10.1016/j.tsf.2009.12.014
  • Callow JA, Callow ME. 2011. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun. 2:244–253.10.1038/ncomms1251
  • Carl C, Poole AJ, Vucko MJ, Williams MR, Whalan S, de Nys R. 2012. Enhancing the efficacy of fouling-release coatings against fouling by Mytilus galloprovincialis using nanofillers. Biofouling. 28:1077–1091.10.1080/08927014.2012.728588
  • Delauney L, Compère C, Lehaitre M. 2010. Biofouling protection for marine environmental sensors. Ocean Sci. 6:503–511.10.5194/os-6-503-2010
  • Dobretsov S, Abed RMM, Teplitski M. 2013. Mini-review: Inhibition of biofouling by marine microorganisms. Biofouling. 29:423–441.10.1080/08927014.2013.776042
  • Dobretsov S, Qian PY. 2006. Facilitation and inhibition of larval attachment of the bryozoan Bugula neritina in association with mono-species and multi-species biofilms. J Exp Mar Biol Ecol. 333:263–274.10.1016/j.jembe.2006.01.019
  • Eguίa E, Trueba A. 2008. Application of marine biotechnology in the production of natural biocides for testing on environmentally innocuous antifouling coatings. J Coat Technol Res. 5:129–129.10.1007/s11998-007-9080-6
  • Finnie AA, Williams DN. 2010. Paint and coatings technology for the control of marine fouling. In: Dürr S, Thomason JC, editors. Biofouling. Oxford: Wiley-Blackwell; p. 185–206.
  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. 2007. Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol. 41:8484–8490.10.1021/es071445r
  • Gladis F, Eggert A, Karsten U, Schumann R. 2010. Prevention of biofilm growth on man-made surfaces: evaluation of antialgal activity of two biocides and photocatalytic nanoparticles. Biofouling. 26:89–101.10.1080/08927010903278184
  • Han J, Qiu W, Gao W. 2010. Potential dissolution and photo-dissolution of ZnO thin films. J Hazard Mater. 178:115–122.10.1016/j.jhazmat.2010.01.050
  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71:1308–1316.10.1016/j.chemosphere.2007.11.047
  • Inbakandan D, Kumar C, Abraham LS, Kirubagaran R, Venkatesan R, Khan SA. 2013. Silver nanoparticles with anti microfouling effect: a study against marine biofilm forming bacteria. Colloids Surf B. 111:636–643.10.1016/j.colsurfb.2013.06.048
  • Jain A, Bhargava R, Poddar P. 2013. Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods. Mater Sci Eng C. 33:1247–1253.10.1016/j.msec.2012.12.019
  • Jaisai M, Baruah S, Dutta J. 2012. Paper modified with ZnO nanorods – antimicrobial studies. Beilstein J Nanotechnol. 3:684–691.10.3762/bjnano.3.78
  • Jansson T, Clare-Salzler ZJ, Zaveri TD, Mehta S, Dolgova NV, Chu B-H, Ren F, Keselowsky BG. 2012. Antibacterial effects of zinc oxide nanorod surfaces. J Nanosci Nanotechnol. 12:7132–7138.10.1166/jnn.2012.6587
  • Jones N, Ray B, Ranjit KT, Manna AC. 2008. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 279:71–76.10.1111/fml.2008.279.issue-1
  • Kubacka A, Muñoz-Batista MJ, Ferrer M, Fernández-García M. 2013. UV and visible light optimization of anatase TiO2 antimicrobial properties: surface deposition of metal and oxide (Cu, Zn, Ag) species. Appl Catal B: Environ. 140–141:680–690.10.1016/j.apcatb.2013.04.077
  • Li M, Lin D, Zhu L. 2013. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut. 173:97–102.10.1016/j.envpol.2012.10.026
  • Li M, Zhu L, Lin D. 2011. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol. 45:1977–1983.10.1021/es102624t
  • Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. 2009. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol. 107:1193–1201.10.1111/j.1365-2672.2009.04303.x
  • Mahmood M, Baruah S, Anal A, Dutta J. 2012. Heterogeneous photocatalysis for removal of microbes from water. Environ Chem Lett. 10:145–151.10.1007/s10311-011-0347-x
  • Mahmood MA, Baruah S, Dutta J. 2011. Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Mater Chem Phys. 130:531–535.10.1016/j.matchemphys.2011.07.018
  • Mahmood MA, Bora T, Dutta J. 2013. Studies on hydrothermally synthesised zinc oxide nanorod arrays for their enhanced visible light photocatalysis. Int J Environ Technol Manag. 16:146–159.10.1504/IJETM.2013.050745
  • Mahmood MA, Dutta J. 2011. Spray pyrolized pre-coating layers for controlled growth of zinc oxide nanorods by hydrothermal process. Nanosc and Nanotechnol – Asia. 1:92–96.
  • Martinelli E, Agostini S, Galli G, Chiellini E, Glisenti A, Pettitt ME, Callow ME, Callow JA, Graf K, Bartels FW. 2008. Nanostructured films of amphiphilic fluorinated block copolymers for fouling release application. Langmuir. 24:13138–13147.10.1021/la801991k
  • Martinelli E, Sarvothaman MK, Galli G, Pettitt ME, Callow ME, Callow JA, Conlan SL, Clare AS. 2012. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials. Biofouling. 28:571–582.10.1080/08927014.2012.697897
  • Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA. 2010. Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol. 44:7329–7334.10.1021/es100247x
  • Morton LHG, Greenway DLA, Gaylarde CC, Surman SB. 1998. Consideration of some implications of the resistance of biofilms to biocides. Int Biodeterior Biodegrad. 41:247–259.10.1016/S0964-8305(98)00026-2
  • Mu J, Shao C, Guo Z, Zhang Z, Zhang M, Zhang P, Chen B, Liu Y. 2011. High photocatalytic activity of ZnO – carbon nanofiber heteroarchitectures. ACS Appl Mater Interfaces. 3:590–596.10.1021/am101171a
  • Myint MTZ, Dutta J. 2012. Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination. 305:24–30.10.1016/j.desal.2012.08.010
  • Myint MTZ, Kitsomboonloha R, Baruah S, Dutta J. 2011. Superhydrophobic surfaces using selected zinc oxide microrod growth on ink-jetted patterns. J Colloid Interface Sci. 354:810–815.10.1016/j.jcis.2010.11.004
  • Myint MTZ, Kumar NS, Hornyak GL, Dutta J. 2012. Hydrophobic/hydrophilic switching on zinc oxide micro-textured surface. Appl Surf Sci. 264:344–348.
  • Natalio F, Andre R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W. 2012. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol. 7:530–535.10.1038/nnano.2012.91
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science. 311:622–627.10.1126/science.1114397
  • Ogata K, Komuro T, Hama K, Koike K, Sasa S, Inoue M, Yano M. 2004. Characterization of undoped ZnO layers grown by molecular beam epitaxy towards biosensing devices. Phys Status Solidi B. 241:616–619.10.1002/(ISSN)1521-3951
  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. 2007. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett. 90:1–3.
  • Sapkota A, Anceno AJ, Baruah S, Shipin OV, Dutta J. 2011. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology. 22:1–7.
  • Sardar S, Sarkar S, Myint MTZ, Al-Harthi S, Dutta J, Pal SK. 2013. Role of central metal ions in hematoporphyrin-functionalized titania in solar energy conversion dynamics. Phys Chem Chem Phys. 15:18562–18570.10.1039/c3cp52353e
  • Schmelmer U, Paul A, Küller A, Steenackers M, Ulman A, Grunze M, Gölzhäuser A, Jordan R. 2007. Nanostructured polymer brushes. Small. 3:459–465.10.1002/(ISSN)1613-6829
  • Schultz MP. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling. 23:331–341.10.1080/08927010701461974
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98.10.1080/08927014.2010.542809
  • Shapiro SS, Wilk MB. 1965. An analysis of variance test for normality (complete samples). Biometrika. 52:591–611.10.1093/biomet/52.3-4.591
  • Siddique S, Shah ZH, Shahid S, Yasmin F. 2013. Preparation, characterization and antibacterial activity of ZnO nanoparticles on broad spectrum of microorganisms. Acta Chim Slov. 60:660–665.
  • Swati G, Mishra S, Yadav D, Sharma RK, Dwivedi D, Vijayan N, Tawale JS, Shanker V, Haranath D. 2013. High yield synthesis and characterization of aqueous stable zinc oxide nanocrystals using various precursors. J Alloy Compd. 571:1–5.
  • Terlizzi A, Fraschetti S, Gianguzza P, Faimali M, Boero F. 2001. Environmental impact of antifouling technologies: state of the art and perspectives. Aquat Conserv: Mar Freshwater Ecosyst. 11:311–317.10.1002/(ISSN)1099-0755
  • Thomas KV, Brooks S. 2010. The environmental fate and effects of antifouling paint biocides. Biofouling. 26:73–88.10.1080/08927010903216564
  • Townsin RL. 2003. The ship hull fouling penalty. Biofouling. 19:9–15.10.1080/0892701031000088535
  • Vucko MJ, King PC, Poole AJ, Jahedi MZ, de Nys R, Whalan S, de Nys R. 2013. Polyurethane seismic streamer skins: an application of cold spray metal embedment. Biofouling. 29:1–9.10.1080/08927014.2012.741682
  • Wahl M. 1989. Marine epibiosis. 1. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser. 58:175–189.10.3354/meps058175
  • Xie Y, He Y, Irwin PL, Jin T, Shi X. 2011. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 77:2325–2331.10.1128/AEM.02149-10
  • Yang Y, Zhang C, Hu Z. 2013. Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion. Environ Sci: Processes & Impacts. 15:39–48.
  • Yebra DM, Kiil Sr, Dam-Johansen K. 2004. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. 50:75–104.10.1016/j.porgcoat.2003.06.001
  • Zaveri TD, Dolgova NV, Chu BH, Lee J, Wong J, Lele TP, Ren F, Keselowsky BG. 2010. Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials. 31:2999–3007.10.1016/j.biomaterials.2009.12.055
  • Zhang M, Zhang K, De Gusseme B, Verstraete B, Field R. 2014. The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Biofouling. 30:347–357.10.1080/08927014.2013.873419

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.