Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 30, 2014 - Issue 8
2,305
Views
22
CrossRef citations to date
0
Altmetric
Mini reviews

Mini-review: the morphology, mineralogy and microbiology of accumulated iron corrosion products

, &
Pages 941-948 | Received 23 Jun 2014, Accepted 30 Jul 2014, Published online: 01 Oct 2014

References

  • Angell P. 2003. Predictive model for non-microbiologically influenced corrosion tuberculation. Technical Report 1003442. Available from http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001003442
  • Ballard RD. 1987. The discovery of the Titanic. New York, NY: Warner Books.
  • Borenstein SW, Lindsay PB. 1988. Microbiologically influenced corrosion failure analysis. Mater Perform. 27:51–54.
  • Chan CS, Fakra SC, Edwards DC, Emerson D, Banfield JF. 2009. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim Cosmochim Acta. 73:3807–3818.
  • Chan CS, Fakra SC, Emerson D, Fleming EJ, Edwards KJ. 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J. 5:717–727.
  • Church RA, Warren DJ, Irion JB. 2009. Analysis of deepwater shipwrecks in the Gulf of Mexico: artificial reef effect of six World War II shipwrecks. Oceanography. 22:50–63.
  • Cook DC, Peterson CE. 2005. Corrosion of submerged artifacts and the conservation of the USS Monitor. AIP Conf Proc. 765:91–96. Available from http://dx.doi.org/10.1063/1.1923640
  • Cornell RM, Giovanoli R, Schindler PW. 1987. Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media. Clay Clay Miner. 35:21–28.
  • Cullimore DR. 2010. Practical atlas for bacterial indentification. 2nd ed. Boca Raton, FL: CRC Press.
  • Cullimore DR, Johnston LA. 2008. Microbiology of concretions, sediments and mechanisms influencing the preservation of submerged archaeological artifacts. Int J Hist Archaeology. 12:120–132.
  • Cullimore DR, Pellegrino C, Johnston L. 2002. RMS Titanic and the emergence of new concepts on consortial nature of microbial events. Rev Environ Contam T. 173:117–141.
  • Dong D, Hua X, Li Y, Zhang J, Yan D. 2003. Cd adsorption properties of components in different freshwater surface coating: the important role of ferromanganese oxides. Environ Sci Technol. 37:4106–4112.
  • Farley KJ, Dzombak DA, Morel FMM. 1985. A surface precipitation model for the sorption of cations on metal-oxides. J Colloid Interface Sci. 106:226–242.
  • Gerke TL, Little BJ, Luxton TP, Scheckel KG, Maynard JB. 2013. Strontium concentrations in corrosion products from residential drinking water distribution systems. Environ Sci Technol. 47:5171–5177.
  • Gerke TL, Little BJ, Luxton TP, Scheckel KG, Maynard JB, Szabo JG. 2014. Strontium adsorption and desorption reactions in model drinking water distribution systems. Aqua. doi:10.2166/aqua.2014.075.
  • Gerke TL, Maynard JB, Schock MR, Lytle DL. 2008. Physiological characterization of five iron tubercles from a single drinking water distribution system: possible new insights on their formation and growth. Corros Sci. 50:2030–2039.
  • Gerke TL, Scheckel KG, Maynard JB. 2010. Speciation and distribution of vanadium in drinking water iron pipe corrosion by-products. Sci Total Environ. 408:5845–5853.
  • Gerke TL, Scheckel KG, Ray RI, Little BJ. 2012. Can dynamic bubble templating play a role in corrosion product morphology? Corrosion. 68:025004-1–025004-7.
  • Herdendorf CE, Thompson TG, Evans RD. 1995. Science on a deep-ocean shipwreck. Ohio J Sci. 95:4–224.
  • Herro HM. 1998. MIC myths – does pitting cause MIC? Paper no. 98278. Houston, TX: NACE International.
  • Hicks RE. 2007. Structure of bacterial communities associated with accelerated corrosive loss of port transportation infrastructure. Final report. Great Lakes Maritime Research Institute. Available from: http://www.glmri.org/research/completedstudies/Tab5.pdf
  • Kobrin G. 1976. Corrosion by microbiological organisms in natural waters. Mater Perform. 15:38–43.
  • Langley S, Gault AG, Ibrahim A, Takahashi Y, Renaud R, Fortin D, Clark ID, Ferris FG. 2009. Sorption of strontium onto bacteriogenic iron oxides. Environ Sci Technol. 43:1008–1014.
  • Long GJ, Hautot D, Grandjean F, Vandormael D, Leighly HP. 2004. A Mossbauer spectral study of the hull steel and rusticles recovered from the Titanic. Hyperfine Interact. 155:1–13.
  • Lutey RW. 2001. Treatment for the mitigation of MIC. In: Stoecker JG, editor. A practical manual on microbiologically influenced corroson. Houston, TX: NACE International; p. 9.1–9.30.
  • Lytle DA, Gerke TL, Maynard JB. 2005. Effect of bacterial sulfate reduction on iron-corrosion scales. J Am Water Works Ass. 97:109–120.
  • Martinez RE, Ferris FG. 2005. Review of the surface chemical heterogeneity of bacteriogenic oxides: proton and cadmium sorption. Am J Sci. 305:854–871.
  • Menzies IA. 1970. Introductory corrosion. In: Miller JDA, editor. Microbial aspects of metallurgy. New York, NY: Elsevier; p. 35–60.
  • Miller JDA, Tiller AK. 1970. Microbial corrosion of buried and immersed metal. In: Miller JDA, editor. Microbial aspects of metallurgy. New York, NY: Elsevier; p. 61–105.
  • Pellegrino C. 2000. Ghosts of the Titanic. New York, NY: Harper Collins.
  • Peng CY, Korshin GV, Valentine RL, Hill AS, Friedman MJ, Reiber SH. 2010. Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems. Water Res. 44:4570–4580.
  • Ray RI, Lee JS, Little BJ. 2009. Factors contributing to corrosion of steel pilings in Duluth-Superior Harbor. Corrosion. 65:707–717.
  • Ray RI, Lee JS, Little BJ, Gerke TL. 2010. The anatomy of tubercles: a corrosion study in a fresh water estuary. Mater Corros. 61:993–999.
  • Sarin P, Snoeyink VL, Bebee J, Kriven WM, Clement JA. 2001. Physico-chemical characteristics of corrosion scales in old iron pipes. Water Res. 35:2961–2969.
  • Sarin P, Snoeyink VL, Bebee J, Jim KK, Beckett MA, Kriven WM, Clement JA. 2004. Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen. Water Res. 38:1259–1269.
  • Sarin P, Snoeyink VL, Lytle DA, Kriven WM. 2004. Iron corrosion scales: model for scale growth, iron release, and colored water formation. J Environ Eng-Asce. 130:364–373.
  • Stoffyn-Egli P, Buckley DE. 1992. The Titanic 80 years later: initial observations on the microstructure and biogeochemistry of corrosion products. Proceedings of 50th Annual Meeting of the Electron Microscopy Society of America, 27th Annual Meeting of the Microbeam Analysis Society and the 19th Annual Meeting of the Microscopical Society of Canada; August 16–21; Boston, MA. San Francisco, CA: San Francisco Press, 1330–1331.
  • Stoffyn-Egli P, Buckley DE. 1993. The Titanic: from metals to minerals. Can Chem News. 45:26–28.
  • Stoffyn-Egli P, Buckley DE. 1995. The micro-world of the Titanic. Chem. Br. 31:551–553.
  • Swietlik J, Raczyk-Stanislawiak U, Piszora P, Nawrocki J. 2012. Corrosion in drinking water pipes: the importance of green rusts. Water Res. 46:1–10.
  • Tamura H. 2008. The role of rusts in corrosion and corrosion protection of iron and steel. Corros Sci. 50:1872–1883.
  • Tang ZJ, Hong SK, Xiao WZ, Taylor J. 2006. Characteristics of iron corrosion scales established under blending of ground, surface, and saline waters and their impacts on iron release in the pipe distribution system. Corros Sci. 48:322–342.
  • Teng F, Guan YT, Zhu WP. 2008. Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: corrosion scales characterization and microbial community structure investigation. Corros Sci. 50:2816–2823.
  • Tiller AK. 1982. Aspects of microbial corrosion. In: Parkins RN, editor. Corrosion processes. London: Applied Science; p. 115–159.
  • Usher KM, Kaksonen AH, MacLeod ID. 2014. Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria. Corros Sci. 83:189–197.