Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 30, 2014 - Issue 9
864
Views
56
CrossRef citations to date
0
Altmetric
Articles

Analysis of the mechanical stability and surface detachment of mature Streptococcus mutans biofilms by applying a range of external shear forces

, &
Pages 1079-1091 | Received 21 May 2014, Accepted 19 Sep 2014, Published online: 30 Oct 2014

References

  • Balakrishnan M, Simmonds RS, Tagg JR. 2000. Dental caries is a preventable infectious disease. Aust Dent J. 45:235–245.10.1111/j.1834-7819.2000.tb00257.x
  • Beech IB, Sunner J. 2004. Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol. 15:181–186.10.1016/j.copbio.2004.05.001
  • Bird RB, Stewart WE, Lightfoot EN. 2002. Transport phenomena. 2nd ed. New York (NY): Wiley.
  • Bourne MC. 2002. Food texture and viscosity: concept and measurement. San Diego (CA): Academic Press; p. 14–31.
  • Bowen WH, Koo H. 2011. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 45:69–86.10.1159/000324598
  • Branda SS, Vik Å, Friedman L, Kolter R. 2005. Biofilms: the matrix revisited. Trends Microbiol. 13:20–26.10.1016/j.tim.2004.11.006
  • Busscher HJ, Van der Mei HC. 2006. Microbial adhesion in flow displacement systems. Clin Microbiol Rev. 19:127–141.10.1128/CMR.19.1.127-141.2006
  • Cense AW, Peeters EAG, Gottenbos B, Baaijens FPT, Nuijs AM, van Dongen MEH. 2006. Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. J Microbiol Methods. 67:463–472.10.1016/j.mimet.2006.04.023
  • Characklis WG, Turakhia MH, Zelver N. 1990. Transport and interfacial transfer phenomena. In: Characklis WG, Marshall KC, editors. Biofilms. New York (NY): John Wiley & Sons; p. 288–289.
  • Cross SE, Kreth J, Zhu L, Sullivan R, Shi W, Qi F, Gimzewski JK. 2007. Nanomechanical properties of glucans and associated cell-surface adhesion of streptococcus mutans probed by atomic force microscopy under in situ conditions. Microbiology. 153:3124–3132.10.1099/mic.0.2007/007625-0
  • Darby R. 2001. Chemical engineering fluid mechanics. 2nd ed., revised and expanded ed. New York (NY): Marcel Dekker.
  • Das T, Sharma PK, Krom BP, van der Mei HC, Busscher HJ. 2011. Role of eDNA on the adhesion forces between streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity. Langmuir. 27:10113–10118.10.1021/la202013m
  • Demirci M, Tuncer S, Yuceokur AA. 2010. Prevalence of caries on individual tooth surfaces and its distribution by age and gender in university clinic patients. Eur J Dent. 4:270–279.
  • Dye BA, Tan S, Smith V, Lewis BG, Barker LK, Thornton-Evans G, Eke PI, Beltrán-Aguilar ED, Horowitz AM, Li C-H. 2007. Trends in oral health status: United States, 1988–1994 and 1999–2004. National Center for Health Statistics. Vital Health Stat. 11:1–92.
  • Flemming H, Wingender J. 2010. The biofilm matrix. Nat Rev. Micro. 8:623–633.
  • Galy O, Latour-Lambert P, Zrelli K, Ghigo J, Beloin C, Henry N. 2012. Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophys J. 103:1400–1408.10.1016/j.bpj.2012.07.001
  • Gottenbos B, Van der Mei HC, Busscher HJ. 1999. Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Meth Enzymol. 310:523–534.10.1016/S0076-6879(99)10040-5
  • Guggenheim B, Guggenheim M, Gmür R, Giertsen E, Thurnheer T. 2004. Application of the Zürich biofilm model to problems of cariology. Caries Res. 38:212–222.10.1159/000077757
  • Guo L, Hu W, He X, Lux R, McLean J, Shi W. 2013. Investigating acid production by Streptococcus mutans with a surface-displayed pH-sensitive green fluorescent protein. PLoS One. 8:e57182.10.1371/journal.pone.0057182
  • Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Micro. 2:95–108.10.1038/nrmicro821
  • Hayacibara MF, Koo H, Vacca Smith AM, Kopec LK, Scott-Anne K, Cury JA, Bowen WH. 2004. The influence of mutanase and dextranase on the production and structure of glucans synthesized by streptococcal glucosyltransferases. Carbohydr Res. 339:2127–2137.10.1016/j.carres.2004.05.031
  • Hull PS. 1980. Chemical inhibition of plaque. J Clin Periodontol. 7:431–442.10.1111/cpe.1980.7.issue-6
  • Jiao BH, Li WJ, Fang YW, Liu S. 2014. Characterization of a marine-derived dextranase and its application to the prevention of dental caries. J Ind Microbiol Biotechnol. 41:17–26.10.1007/s10295-013-1369-0
  • Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P. 2002. Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol Bioeng. 80:289–296.10.1002/(ISSN)1097-0290
  • Klein MI, Duarte S, Xiao J, Mitra S, Foster TH, Koo H. 2009. Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development. Appl Environ Microbiol. 75:837–841.10.1128/AEM.01299-08
  • Klein MI, DeBaz L, Agidi S, Lee H, Xie G, Lin AHM, Hamaker BR, Lemos JA, Koo H. 2010. Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during Bbofilm development. PLoS One. 5:e13478.10.1371/journal.pone.0013478
  • Koo H, Falsetta ML, Klein MI. 2013. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res. 92:1065–1073.10.1177/0022034513504218
  • Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, Vacca-Smith AM, Bowen WH. 2003. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother. 52:782–789.10.1093/jac/dkg449
  • Koo H, Xiao J, Klein MI, Jeon JG. 2010. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol. 192:3024–3032.10.1128/JB.01649-09
  • Kopec LK, Vacca-Smith AM, Bowen WH. 1997. Structural aspects of glucans formed in solution and on the surface of hydroxyapatite. Glycobiology. 7:929–934.10.1093/glycob/7.7.929
  • Körstgens V, Flemming H, Wingender J, Borchard W. 2001. Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J Microbiol Methods. 46:9–17.10.1016/S0167-7012(01)00248-2
  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ. 2013. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 3:a010306.
  • Kreth J, Hagerman E, Tam K, Merritt J, Wong DTW, Wu BM, Myung NV, Shi W, Qi F. 2004. Quantitative analyses of Streptococcus mutans biofilms with quartz crystal microbalance, microjet impingement and confocal microscopy. Biofilms. 1:277–284.10.1017/S1479050504001516
  • Kreth J, Zhu L, Merritt J, Shi W, Qi F. 2008. Role of sucrose in the fitness of Streptococcus mutans. Oral Microbiol Immunol. 23:213–219.10.1111/j.1399-302X.2007.00413.x
  • Lau PCY, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS. 2009. Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms. J Bacteriol. 191:6618–6631.10.1128/JB.00698-09
  • Lynch DJ, Fountain TL, Mazurkiewicz JE, Banas JA. 2007. Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. FEMS Microbiol Lett. 268:158–165.10.1111/fml.2007.268.issue-2
  • Mann EE, Wozniak DJ. 2012. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev. 36:893–916.10.1111/j.1574-6976.2011.00322.x
  • Marsh PD, Moter A, Devine DA. 2011. Dental plaque biofilms: communities, conflict and control. Periodontol 2000. 55:16–35.10.1111/prd.2010.55.issue-1
  • Martines E, McGhee K, Wilkinson C, Curtis A. 2004. A parallel-plate flow chamber to study initial cell adhesion on a nanofeatured surface. IEEE Trans Nanobioscience. 3:90–95.10.1109/TNB.2004.828268
  • McCabe WL, Smith JC. 1976. Unit operations of chemical engineering. New York (NY): McGraw-Hill.
  • Mert B, Campanella OH. 2008. The study of the mechanical impedance of foods and biomaterials to characterize their linear viscoelastic behavior at high frequencies. Rheol Acta. 47:727–737.10.1007/s00397-008-0277-0
  • Monds RD, O’Toole GA. 2009. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17:73–87.10.1016/j.tim.2008.11.001
  • O’Toole G, Kaplan HB, Kolter R. 2000. Biofilm formation as microbial development. Annu Rev Microbiol. 54:49–79.10.1146/annurev.micro.54.1.49
  • Paes Leme AF, Koo H, Bellato CM, Bedi G, Cury JA. 2006. The role of sucrose in cariogenic dental biofilm formation – new insight. J Dent Res. 85:878–887.10.1177/154405910608501002
  • Peterson BW, van der Mei HC, Sjollema J, Busscher HJ, Sharma PK. 2013. A distinguishable role of eDNA in the viscoelastic relaxation of biofilms. mBio 4:e00497–13.
  • Rmaile A, Carugo D, Capretto L, Aspiras M, De Jager M, Ward M, Stoodley P. 2014. Removal of interproximal dental biofilms by high-velocity water microdrops. J Dent Res. 93:68–73.10.1177/0022034513510945
  • Shaw T, Winston M, Rupp CJ, Klapper I, Stoodley P. 2004. Commonality of elastic relaxation times in biofilms. Phys Rev Lett. 93:098102.10.1103/PhysRevLett.93.098102
  • Shumi W, Kim SH, Lim J, Cho K, Han H, Park S. 2013. Shear stress tolerance of Streptococcus mutans aggregates determined by microfluidic funnel device (μFFD). J Microbiol Methods. 93:85–89.10.1016/j.mimet.2013.02.004
  • Simões M, Simões LC, Cleto S, Pereira MO, Vieira MJ. 2008. The effects of a biocide and a surfactant on the detachment of Pseudomonas fluorescens from glass surfaces. Int J Food Microbiol. 121:335–341.10.1016/j.ijfoodmicro.2007.11.041
  • Stewart PS. 2014. Biophysics of biofilm infection. Pathog Dis. 70:212–218.
  • Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nat Rev Micro. 6:199–210.10.1038/nrmicro1838
  • Sumei L, Klein MI, Heim KP, Fan Y, Bitoun JP, Ahn SJ, Burne RA, Koo H, Brady LJ, Wen ZT. 2014. Streptococcus mutans eDNA is up-regulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bact. 196:2355–2366.
  • Towler BW, Rupp CJ, Cunningham AB, Stoodley P. 2003. Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling. 19:279–285.10.1080/0892701031000152470
  • Vinogradov AM, Winston M, Rupp CJ, Stoodley P. 2004. Rheology of biofilms formed from the dental plaque pathogen Streptococcus mutans. Biofilms. 1:49–56.10.1017/S1479050503001078
  • Waters MS, Kundu S, Lin NJ, Lin-Gibson S. 2014. Microstructure and mechanical properties of in situ Streptococcus mutans biofilms. ACS Appl Mater Interfaces. 6:327–332.10.1021/am404344h
  • Xiao J, Koo H. 2010. Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by Streptococcus mutans in biofilms. J Appl Microbiol. 108:2103–2113.
  • Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JRI, Heydorn A, Koo H. 2012. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog. 8:e1002623.10.1371/journal.ppat.1002623

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.