Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 31, 2015 - Issue 4
1,729
Views
119
CrossRef citations to date
0
Altmetric
Articles

One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa

, , , , , & show all
Pages 379-391 | Received 12 Dec 2014, Accepted 01 May 2015, Published online: 09 Jun 2015

References

  • Adner D, Korb M, Schulze S, Hietschold M, Lang H. 2013. A straightforward approach to oxide-free copper nanoparticles by thermal decomposition of a copper (I) precursor. Chem Commun. 49:6855–6857.10.1039/c3cc42914h
  • Agarwala M, Choudhury B, Yadav RNS. 2014. Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol. 54:365–368.10.1007/s12088-014-0462-z
  • Aires JR, Kohler T, Nikaido H, Plesiat P. 1999. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 43:2624–2628.
  • Annuk H, Hirmo S, Turi E, Mikelsaar M, Arak E, Wadstrom T. 1999. Effect on cell surface hydrophobicity and susceptibility of Helicobacter pylori to medicinal plant extracts. FEMS Microbiol Lett. 172:41–45.10.1111/fml.1999.172.issue-1
  • Babay HAH. 2007. Antimicrobial resistance among clinical isolates of Pseudomonas aeruginosa from patients in a teaching hospital, Riyadh, Saudi Ara. Jpn J Infect Dis. 60:123–125.
  • Bakkiyaraj D, RathnaNandhini J, Malathy B, Pandian SK. 2013. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling. 29:929–937.10.1080/08927014.2013.820825
  • Baldassarri L, Creti R, Recchia S, Imperi M, Facinelli B, Giovanetti E, Pataracchia M, Alfarone G, Orefic G. 2006. Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol. 44:2721–2727.10.1128/JCM.00512-06
  • Betancourt-Galindo R, Reyes-Rodriguez PY, Puente-Urbina BA, Avila-Orta CA, Rodríguez-Fernández OS, Cadenas-Pliego G, Lira-Saldivar RH, García-Cerda LA. 2014. Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties. J Nanomater. 2014:980545-1–980545-5.
  • Borkow G, Gabbay J. 2009. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol. 3:272–278.
  • Borkow G, Gabbay J, Dardik R, Eidelman AI, Lavie Y, Grunfeld Y, Ikher S, Huszar M, Zatcoff C, Marikovsky M. 2010. Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen. 18:266–275.10.1111/wrr.2010.18.issue-2
  • Bos R, Van der Mei HC, Busscher HJ. 1999. Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev. 23:179–230.
  • Brackman G, Defoirdt T, Miyamoto C, Bossier P, Calenbergh VS, Nelis H, Coenye T. 2008. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol. 8:1–14. doi:10.1186/1471-2180-8-14. 10.1186/1471-2180-8-149
  • Brockhurst MA, Buckling A, Gardner A. 2007. Cooperation peaks at intermediate disturbance. Curr Biol. 17:761–765.10.1016/j.cub.2007.02.057
  • Brown MR, Collier PJ, Gilbert P. 1990. Influence of growth rate on susceptibility to antimicrobial agents: modification of the cell envelope and batch and continuous culture studies. Antimicrob Agents Chemother. 34:1623–1628.10.1128/AAC.34.9.1623
  • Cho KH, Park JE, Osaka T, Park SG. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta. 51:956–960.10.1016/j.electacta.2005.04.071
  • Christensen GD, Baldassarri L, Simpson WA. 1995. Methods for studying microbial colonization of plastics. Methods Enzymol. 253:477–500.10.1016/S0076-6879(95)53040-1
  • Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science. 284:1318–1322.10.1126/science.284.5418.1318
  • Creghton JA, Eadon DG. 1991. Ultraviolet–visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday Trans. 87:3881–3891.10.1039/ft9918703881
  • Darezereshki B, Min J. 2011. Synthesis and characterization of tenorite (CuO) nanoparticles from CuNP smelting furnace dust (SFD). Metall Sect B-Metall. 47:73–78.10.2298/JMMB1101073D
  • Ergin C, Mutlu G. 1999. Clinical distribution and antibiotic resistance of Pseudomonas species. East J Med. 4:65–69.
  • Eshed M, Lellouche J, Gedanken A, Banin E. 2014. A Zn-doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to nanosized CuO. Adv Func Material. 24:1382–1390.10.1002/adfm.v24.10
  • Gajardo GM, Beardmore JA. 2012. The brine shrimp Artemia: adapted to critical life conditions. Frontiers Physiol. 3:1–14. doi:10.3389/fphys.2012.00185.
  • Gopinath V, MubarakAli D, Priyadarshini S, MeeraPriyadharsshini N, Thajuddin N, Velusamy P. 2012. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf B. 96:69–74.10.1016/j.colsurfb.2012.03.023
  • Harne S, Sharma A, Dhaygude M, Joglekar S, Kodam K, Hudlikar H. 2012. Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf B. 95:284–288.10.1016/j.colsurfb.2012.03.005
  • Ikeno T, Fukudo K, Ogawa M, Honda M, Tanebe T, Taniguchu H. 2007. Small and rough colony Pseudomonas aeruginosa with elevated biofilm formation ability isolated in hospitalized patients. Microbiol Immunol. 51:929–938.10.1111/mim.2007.51.issue-10
  • Kohler TM, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechere JC. 1997. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol. 23:345–354.10.1046/j.1365-2958.1997.2281594.x
  • Lambert PA. 2002. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med. 95:22–26.
  • Lee M, Kim S, Li X, Lee J. 2014. Bacterial virulence analysis using brine shrimp as an infection model in relation to the importance of quorum sensing and proteases. J Gen Appl Microbiol. 60:169–174.10.2323/jgam.60.169
  • Lewis K. 2001. The riddle of biofilm resistance. Antimicrob Agents Chemother. 45:999–1007.10.1128/AAC.45.4.999-1007.2001
  • Li XZ, Barre N, Poole K. 2000. Influence of the MexA-MexB-oprM multidrug efflux system on expression of the MexC-MexD-oprJ and MexE-MexF-oprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother. 46:885–893.10.1093/jac/46.6.885
  • Limsuwan S, Voravuthikunchai SP. 2008. Boesenbergia pandurata (Roxb.) Schltr., Eleutherine americana Merr. and Rhodomyrtus tomentosa (Aiton) Hassk. as antibiofilm producing and antiquorum sensing in Streptococcus pyogenes. FEMS Immunol Med Microbiol. 53:429–436.10.1111/fim.2008.53.issue-3
  • Lo CH, Tsung TT, Chen LC, Su CH, Lin HM. 2005. Fabrication of copper oxide nanofluid using submerged arc nanoparticles synthesis system (SANSS). J Nanopart Res. 7:313–320.10.1007/s11051-004-7770-x
  • Marques A, Ollevier F, Verstraete W, Sorgeloos P, Bossier P. 2006. Gnotobiotically grown aquatic animals: opportunities to investigate host-microbe interactions. J Appl Microbiol. 100:903–918.10.1111/jam.2006.100.issue-5
  • Martinez-Gutierrez F, Boegli L, Agostinho A, Sánchez EM, Bach H, Ruize F, James G. 2013. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 29:651–660.10.1080/08927014.2013.794225
  • Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu Rev Microbiol. 55:165–199.10.1146/annurev.micro.55.1.165
  • MubarakAli D, Arunkumar J, Pooja P, Subramanian G, Thajuddin N. 2015. Synthesis and characterization of biocompatible tenorite nanoparticles and potential property against biofilm formation. Saudi Pharm J. doi:10.1016/j.jsps.2014.11.007.
  • Nithya C, Farzana Begum M, Pandian SK. 2010. Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol. 88:341–358.10.1007/s00253-010-2777-y
  • Nithya C, LewisOscar F, Kanaga S, Kavitha R, Bakkiyaraj D, Arunkumar M, Alharbi NS, Chinnathambi A, Alharbi SA, Thajuddin N. 2014. Biofilm inhibitory potential of Chlamydomonas sp. extract against Pseudomonas aeruginosa. J Algal Biomass Utln. 5:74–81.
  • O’Toole G, Kaplan HB, Kolter R. 2000. Biofilm formation as microbial development. Annu Rev Microbiol. 54:49–79.10.1146/annurev.micro.54.1.49
  • Palanisamy NK, Ferina N, Amirulhusni AN, Mohd-Zain Z, Hussaini J, Ping LJ, Durairaj R. 2014. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J Nanobiotechnol. 12:1–7. doi:10.1186/1477-3155-12-2.10.1186/1477-3155-12-2
  • Poole K, Gotoh N, Tsujimoto H, Zhao Q, Wada A, Yamasaki T, Neshat S, Yamagishi J, Li XZ, Nishino T. 1996. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol. 21:713–725.10.1046/j.1365-2958.1996.281397.x
  • Poole K, Krebes K, McNally C, Neshat S. 1993. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol. 175:7363–7372.
  • Rainey PB, Rainey K. 2003. Evolution of cooperation and conflict in experimental bacterial populations. Nature. 425:72–74.10.1038/nature01906
  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, AbdulRahuman A. 2012. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett. 71:114–116.10.1016/j.matlet.2011.12.055
  • Razak FA, Othman RY, Rahim ZH. 2006. The effect of Piper beetle and Psidium guajava extracts on the cell-surface hydrophobicity of selected early settlers of dental plaque. J Oral Sci. 48:71–75.10.2334/josnusd.48.71
  • Salavati-Niasari M, Davar F. 2009. Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater Lett. 63:441–443.10.1016/j.matlet.2008.11.023
  • Salavati-Niasari M, Davar F, Mir N. 2008. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron. 27:3514–3518.10.1016/j.poly.2008.08.020
  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 184:1140–1154.10.1128/jb.184.4.1140-1154.2002
  • Serebryakova EV, Darmov IV, Medvedev NP, Alekseev SA, Rybak SI. 2002. Evaluation of the hydrophobicity of bacterial cells by measuring their adherence to chloroform drops. Mikrobiologiia. 71:237–239.
  • Shah M, Al-Ghamdi MS. 2011. Preparation of copper (Cu) and copper oxide (Cu2O) nanoparticles under supercritical conditions. Mater Sci Appl. 2:977–980.
  • Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 275:177–182.10.1016/j.jcis.2004.02.012
  • Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol. 56:187–209.10.1146/annurev.micro.56.012302.160705
  • Swiatlo E, Champlin FR, Holman SC, Wilson WW, Watt JM. 2002. Contribution of choline-binding proteins to cell surface properties of Streptococcus pneumoniae. Infect Immun. 70:412–415.10.1128/IAI.70.1.412-415.2002
  • Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S. 2000. Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol. 182:6482–6489.10.1128/JB.182.22.6482-6489.2000
  • Vicente-García V, Ríos-Leal E, Calderón-Domínguez G, Canĩzares-Villanueva RO, Olvera-Ramírez R. 2004. Detection, isolation, and characterization of exopolysaccharide produced by a strain of Phormidium 94a isolated from an arid zone of Mexico. Biotechnol Bioeng. 85:306–310.10.1002/(ISSN)1097-0290
  • Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M. 2004. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol. 6:269–275.10.1046/j.1462-5822.2004.00367.x
  • Xavier JB, Foster KR. 2007. Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci USA. 104:876–881.10.1073/pnas.0607651104
  • Yao W, Yue D I, Yong Z, Bo HY, Yu YB, Yun CS. 2007. Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa. Sci China C Life Sci. 50:385–391.
  • Yildiz FH, Schoolnik GK. 1999. Vibrio cholerae 01 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA. 96:4028–4033.10.1073/pnas.96.7.4028
  • You J, Xue X, Cao L, Lu X, Wang J, Zhang L, Zhou SV. 2007. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol. 76:1137–1144.10.1007/s00253-007-1074-x
  • Zhang Y, Miller RM. 1992. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol. 58:3276–3282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.