Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 32, 2016 - Issue 5
1,190
Views
35
CrossRef citations to date
0
Altmetric
Articles

Characterization and anti-biofilm activity of extracellular polymeric substances produced by the marine biofilm-forming bacterium Pseudoalteromonas ulvae strain TC14

, , , , , , & show all
Pages 547-560 | Received 06 Sep 2015, Accepted 07 Mar 2016, Published online: 29 Mar 2016

References

  • Abu-Lail NI, Camesano TA. 2003. Polysaccharide properties probed with atomic force microscopy. J Microsc. 212:217–238. doi:10.1111/j.1365-2818.2003.01261.x.
  • Ahmed Z, Wang Y, Anjum N, Ahmad A, Khan ST. 2013a. Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir – Part II. Food Hydrocoll. 30:343–350. doi:10.1016/j.foodhyd.2012.06.009.
  • Ahmed Z, Wang Y, Anjum N, Ahmad H, Ahmad A, Raza M. 2013b. Characterization of new exopolysaccharides produced by coculturing of L. kefiranofaciens with yoghurt strains. Int J Biol Macromol. 59:377–383. doi:10.1016/j.ijbiomac.2013.04.075.
  • Almeida JR, Vasconcelos V. 2015. Natural antifouling compounds: effectiveness in preventing invertebrate settlement and adhesion. Biotechnol Adv. 33:343–357. doi:10.1016/j.biotechadv.2015.01.013.
  • Ayé MA, Bonnin-Jusserand M, Brian-Jaisson F, Ortalo-Magné A, Culioli G, Koffi Nevry R, Rabah N, Blache Y, Molmeret M. 2015. Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14. Microbiology. 161:2039–2051.
  • Beloin C, Renard S, Ghigo J-M, Lebeaux D. 2014. Novel approaches to combat bacterial biofilms. Curr Opin Pharmacol. 18:61–68. doi:10.1016/j.coph.2014.09.005.
  • Bernbom N, Ng YY, Kjelleberg S, Harder T, Gram L. 2011. Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain s91 and zoospores of the green alga Ulva australis independent of bacteriocidal activity. Appl Environ Microbiol. 77:8557–8567. doi:10.1128/AEM.06038-11.
  • Bernbom N, Ng YY, Olsen SM, Gram L. 2013. Pseudoalteromonas spp. serve as initial bacterial attractants in mesocosms of coastal waters but have subsequent antifouling capacity in mesocosms and when embedded in paint. Appl Environ Microbiol. 79:6885–6893. doi:10.1128/AEM.01987-13.
  • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37:911–917. doi:10.1139/o59-099.
  • Blumenkrantz N, Asboe-Hansen G. 1973. New method for quantitative determination of uronic acids. Anal Biochem. 54:484–489. doi:10.1016/0003-2697(73)90377-1.
  • Bowman J. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs. 5:220–241. doi:10.3390/md504220.
  • Brian-Jaisson F, Ortalo-Magné A, Guentas-Dombrowsky L, Armougom F, Blache Y, Molmeret M. 2014. Identification of bacterial strains isolated from the mediterranean sea exhibiting different abilities of biofilm formation. Microb Ecol. 68:94–110. doi:10.1007/s00248-013-0342-9.
  • Brown MJ, Lester JN. 1980. Comparison of bacterial extracellular polymer extraction methods. Appl Environ Microbiol. 40:179–185.
  • Candela T, Fouet A. 2006. Poly-gamma-glutamate in bacteria. Mol Microbiol. 60:1091–1098. doi:10.1111/mmi.2006.60.issue-5.
  • Candela T, Moya M, Haustant M, Fouet A. 2009. Fusobacterium nucleatum, the first Gram-negative bacterium demonstrated to produce polyglutamate. Can J Microbiol. 55:627–632. doi:10.1139/W09-003.
  • Cao B, Ahmed B, Kennedy DW, Wang Z, Shi L, Marshall MJ, Fredrickson JK, Isern NG, Majors PD, Beyenal H. 2011a. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization. Environ Sci Technol. 45:5483–5490. doi:10.1021/es200095j.
  • Cao B, Shi L, Brown RN, Xiong Y, Fredrickson JK, Romine MF, Marshall MJ, Lipton MS, Beyenal H. 2011b. Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol. 13:1018–1031. doi:10.1111/emi.2011.13.issue-4.
  • Chalkiadakis E, Dufourcq R, Schmitt S, Brandily C, Kervarec N, Coatanea D, Amir H, Loubersac L, Chanteau S, Guezennec J, et al. 2013. Partial characterization of an exopolysaccharide secreted by a marine bacterium, Vibrio neocaledonicus sp. nov., from New Caledonia. J Appl Microbiol. 114:1702–1712. doi:10.1111/jam.2013.114.issue-6.
  • Chavant P, Gaillard-Martinie B, Talon R, Hébraud M, Bernardi T. 2007. A new device for rapid evaluation of biofilm formation potential by bacteria. J Microbiol Methods. 68:605–612. doi:10.1016/j.mimet.2006.11.010.
  • Delabarre-Ladrat C, Boursicot V, Colliec-Jouault S. 2015. Marine-derived exopolysaccharides. In: Kim SK, editor. Handbook of marine biotechnology. Berlin: Springer; p. 919–939.
  • Dheilly A, Soum-Soutera E, Klein GL, Bazire A, Compere C, Haras D, Dufour A. 2010. Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6. Appl Environ Microbiol. 76:3452–3461. doi:10.1128/AEM.02632-09.
  • Dobretsov SV, Qian P-Y. 2002. Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling. 18:217–228. doi:10.1080/08927010290013026.
  • Dobretsov S, Abed RMM, Teplitski M. 2013. Mini-review: inhibition of biofouling by marine microorganisms. Biofouling. 29:423–441. doi:10.1080/08927014.2013.776042.
  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28:350–356. doi:10.1021/ac60111a017.
  • Egan S, Thomas T, Holmström C, Kjelleberg S. 2000. Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Environ Microbiol. 2:343–347. doi:10.1046/j.1462-2920.2000.00107.x.
  • Egan S, Holmström C, Kjelleberg S. 2001. Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. Int J Syst Evol Microbiol. 51:1499–1504. doi:10.1099/00207713-51-4-1499.
  • Egan S, James S, Holmström C, Kjelleberg S. 2002. Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. Environ Microbiol. 4:433–442. doi:10.1046/j.1462-2920.2002.00322.x.
  • Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat Rev Micro. 8:623–633.
  • Francius G, Alsteens D, Dupres V, Lebeer S, De Keersmaecker S, Vanderleyden J, Gruber HJ, Dufrene YF. 2009. Stretching polysaccharides on live cells using single molecule force spectroscopy. Nat Protoc. 4:939–946. doi:10.1038/nprot.2009.65.
  • Guezennec J, Herry JM, Kouzayha A, Bachere E, Mittelman MW, Bellon Fontaine MN. 2012. Exopolysaccharides from unusual marine environments inhibit early stages of biofouling. Int Biodeterior Biodegrad. 66:1–7. doi:10.1016/j.ibiod.2011.10.004.
  • Holmström C, Kjelleberg S. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol. 30:285–293. doi:10.1111/fem.1999.30.issue-4.
  • Holmström C, Egan S, Franks A, McCloy S, Kjelleberg S. 2002. Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol Ecol. 41:47–58. doi:10.1111/fem.2002.41.issue-1.
  • Jiang P, Li J, Han F, Duan G, Lu X, Gu Y, Yu W. 2011. Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS ONE. 6:e18514. doi:10.1371/journal.pone.0018514.
  • Kavita K, Mishra A, Jha B. 2011. Isolation and physico-chemical characterisation of extracellular polymeric substances produced by the marine bacterium Vibrio parahaemolyticus. Biofouling. 27:309–317. doi:10.1080/08927014.2011.562605.
  • Kavita K, Mishra A, Jha B. 2013. Extracellular polymeric substances from two biofilm forming Vibrio species: characterization and applications. Carbohydr Polym. 94:882–888. doi:10.1016/j.carbpol.2013.02.010.
  • Kavita K, Singh VK, Mishra A, Jha B. 2014. Characterisation and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis. Carbohydr Polym. 101:29–35. doi:10.1016/j.carbpol.2013.08.099.
  • Liang Z, Li W, Yang S, Du P. 2010. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge. Chemosphere. 81:626–632. doi:10.1016/j.chemosphere.2010.03.043.
  • Liu C, Lu J, Lu L, Liu Y, Wang F, Xiao M. 2010. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresour Technol. 101:5528–5533. doi:10.1016/j.biortech.2010.01.151.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193:265–275.
  • More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY. 2014. Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage. 144:1–25. doi:10.1016/j.jenvman.2014.05.010.
  • Papa R, Parrilli E, Sannino F, Barbato G, Tutino ML, Artini M, Selan L. 2013. Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Res Microbiol. 164:450–456. doi:10.1016/j.resmic.2013.01.010.
  • Pellicer-Nàcher C, Domingo-Félez C, Mutlu AG, Smets BF. 2013. Critical assessment of extracellular polymeric substances extraction methods from mixed culture biomass. Water Res. 47:5564–5574. doi:10.1016/j.watres.2013.06.026.
  • Qian PY, Lau SCK, Dahms HU, Dobretsov S, Harder T. 2007. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar Biotechnol. 9:399–410. doi:10.1007/s10126-007-9001-9.
  • Qian P-Y, Xu Y, Fusetani N. 2010. Natural products as antifouling compounds: recent progress and future perspectives. Biofouling. 26:223–234.
  • Qian P-Y, Li Z, Li Y, Fusetani N. 2015. Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009-2014. Biofouling. 31:101–122. doi:10.1080/08927014.2014.997226.
  • Rendueles O, Kaplan JB, Ghigo J-M. 2012. Antibiofilm polysaccharides. Environ Microbiol. 15:334–346.
  • Sayem S, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, De Felice M, Varcamonti M. 2011. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Fact. 10:74–85. doi:10.1186/1475-2859-10-74.
  • Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer A-M, Helley D, Colliec-Jouault S. 2011. Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs. 9:1664–1681. doi:10.3390/md9091664.
  • Singh RP, Shukla MK, Mishra A, Kumari P, Reddy CRK, Jha B. 2011. Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydr Polym. 84:1019–1026. doi:10.1016/j.carbpol.2010.12.061.
  • Skovhus TL, Holmstroem C, Kjelleberg S, Dahlloef I. 2007. Molecular investigation of the distribution, abundance and diversity of the genus Pseudoalteromonas in marine samples. FEMS Microbiol Ecol. 61:348–361. doi:10.1111/fem.2007.61.issue-2.
  • Van S, Das SK, Wang XH, Feng ZL, Jin Y, Hou Z, Chen F, Pham A, Jiang N, Howell SB, et al. 2010. Synthesis, characterization, and biological evaluation of poly(L-gamma-glutamyl-glutamine)-paclitaxel nanoconjugate. Int J Nanomed. 5:825–837. doi:10.2147/IJN.
  • Vu B, Chen M, Crawford R, Ivanova E. 2009. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 14:2535–2554. doi:10.3390/molecules14072535.
  • Wahl M. 1989. Marine epibiosis.1. Fouling and antifouling - some basic aspects. Mar Ecol-Prog Ser. 58:175–189. doi:10.3354/meps058175.
  • Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X. 2010. Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr Polym. 82:895–903. doi:10.1016/j.carbpol.2010.06.013.
  • Wang H, Wang F, Zhu X, Yan Y, Yu X, Jiang P, Xing X-H. 2012. Biosynthesis and characterization of violacein, deoxyviolacein and oxyviolacein in heterologous host, and their antimicrobial activities. Biochem Eng J. 67:148–155. doi:10.1016/j.bej.2012.06.005.
  • Ye S, Liu F, Wang J, Wang H, Zhang M. 2012. Antioxidant activities of an exopolysaccharide isolated and purified from marine Pseudomonas PF-6. Carbohydr Polym. 87:764–770. doi:10.1016/j.carbpol.2011.08.057.
  • Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology - past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. 50:75–104. doi:10.1016/j.porgcoat.2003.06.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.