Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 32, 2016 - Issue 7
345
Views
20
CrossRef citations to date
0
Altmetric
Articles

Metabolic dynamics of Desulfovibrio vulgaris biofilm grown on a steel surface

, , &
Pages 725-736 | Received 11 Jan 2016, Accepted 18 May 2016, Published online: 14 Jun 2016

References

  • Beale D, Dunn M, Marney D. 2010. Application of GC–MS metabolic profiling to ‘blue-green water’from microbial influenced corrosion in copper pipes. Corros Sci. 52:3140–3145. doi:10.1016/j.corsci.2010.04.039
  • Beale D, Dunn M, Marney D, Marlow D. 2012. Metabolomic footprinting and MIC within water supply networks. Corros Mater. 37:69–77.
  • Beale D, Dunn M, Morrison PD, Porter NA, Marlow DR. 2012. Characterisation of bulk water samples from copper pipes undergoing microbially influenced corrosion by diagnostic metabolomic profiling. Corros Sci. 55:272–279. doi:10.1016/j.corsci.2011.10.026
  • Beale D, Barratt R, Marlow D, Dunn M, Palombo E, Morrison P, Key C. 2013. Application of metabolomics to understanding biofilms in water distribution systems: a pilot study. Biofouling. 29:283–294. doi:10.1080/08927014.2013.772140
  • Beale D, Morrison P, Key C, Palombo E. 2014. Metabolic profiling of biofilm bacteria known to cause microbial influenced corrosion. Water Sci Technol. 69:1–8.
  • Boon C, Deng Y, Wang L-H, He Y, Xu J-L, Fan Y, Pan SQ, Zhang L-H. 2008. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME Journal. 2:27–36. doi:10.1038/ismej.2007.76
  • Boopathy R, Daniels L. 1991. Effect of pH on anaerobic mild steel corrosion by methanogenic bacteria. Appl Environ Microbiol. 57:2104–2108.
  • Booth SC, Workentine ML, Wen J, Shaykhutdinov R, Vogel HJ, Ceri H, Turner RJ, Weljie AM. 2011. Differences in metabolism between the biofilm and planktonic response to metal stress. J Proteome Res. 10:3190–3199. doi:10.1021/pr2002353
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Chatterjee S, Newman KL, Lindow SE. 2008. Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape. Mol Plant-Microbe Interact. 21:1309–1315. doi:10.1094/MPMI-21-10-1309
  • Choi Y, Morgenroth E. 2003. Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Water Sci Technol. 47:69–76.
  • Clark ME, He Z, Redding AM, Joachimiak MP, Keasling JD, Zhou JZ, Arkin AP, Mukhopadhyay A, Fields MW. 2012. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state. BMC Genomics. 13:1–17. doi:10.1186/1471-2164-13-138
  • Cornelis P. 2010. Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol. 86:1637–1645. doi:10.1007/s00253-010-2550-2
  • Cui X, Churchill GA. 2003. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 4:1–10. doi:10.1186/gb-2003-4-4-210
  • Davies DG, Marques CN. 2009. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol. 191:1393–1403. doi:10.1128/JB.01214-08
  • Dettmer K, Hammock BD. 2004. Metabolomics – a new exciting field within the ‘omics’ sciences. Environ Health Perspect. 112:A396.
  • Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol. 8:623–633.
  • Gjersing EL, Herberg JL, Horn J, Schaldach CM, Maxwell RS. 2007. NMR metabolomics of planktonic and biofilm modes of growth in Pseudomonas aeruginosa. Anal Chem. 79:8037–8045. doi:10.1021/ac070800t
  • Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. 2005. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 56:219–243.
  • Huang T-P, Wong ACL. 2007. A cyclic AMP receptor protein-regulated cell-cell communication system mediates expression of a FecA homologue in Stenotrophomonas maltophilia. Appl Environ Microbiol. 73:5034–5040. doi:10.1128/AEM.00366-07
  • Hunt SM, Werner EM, Huang B, Hamilton MA, Stewart PS. 2004. Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol. 70:7418–7425. doi:10.1128/AEM.70.12.7418-7425.2004
  • Karatan E, Watnick P. 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 73:310–347. doi:10.1128/MMBR.00041-08
  • Keller KL, Wall JD. 2011. Genetics and molecular biology of the electron flow for sulfate respiration in Desulfovibrio. Front Microbil. 2:1–17.
  • Keller KL, Rapp-Giles BJ, Semkiw ES, Porat I, Brown SD, Wall JD. 2014. New model for electron flow for sulfate reduction in Desulfovibrio alaskensis G20. Appl Environ Microbiol. 80:855–868. doi:10.1128/AEM.02963-13
  • Kouremenos KA, Beale DJ, Antti H, Palombo EA. 2014. Liquid chromatography time of flight mass spectrometry based environmental metabolomics for the analysis of Pseudomonas putida bacteria in potable water. J Chromatogr B. 966:179–186. doi:10.1016/j.jchromb.2014.02.058
  • Kuchma SL, O’Toole GA. 2000. Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol. 11:429–433. doi:10.1016/S0958-1669(00)00123-3
  • Lappin-Scott H, Costerton J, Marrie T 1992. Biofilms and biofouling. Encycl Microbiol. 1:277–284.
  • Little B, Staehle R, Davis R. 2001. Fungal influenced corrosion of post-tensioned cables. Int Biodeterior Biodegrad. 47:71–77. doi:10.1016/S0964-8305(01)00039-7
  • Liu Y, Lin Y-M, Yang S-F, Tay J-H. 2003. A balanced model for biofilms developed at different growth and detachment forces. Process Biochem. 38:1761–1765. doi:10.1016/S0032-9592(02)00260-1
  • Liu H, Huang L, Huang Z, Zheng J. 2007. Specification of sulfate reducing bacteria biofilms accumulation effects on corrosion initiation. Mater Corros. 58:44–48. doi:10.1002/(ISSN)1521-4176
  • Nawawi M, Sahrani FK, Azizan KA, Ali M, Ahmad A, Usup G. 2014. Sulfate-reducing bacteria metabolite detection using GC-MS. Malays Appl Biol 43:41–51.
  • Neria-González I, Wang ET, Ramírez F, Romero JM, Hernández-Rodríguez C. 2006. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe. 12:122–133. doi:10.1016/j.anaerobe.2006.02.001
  • Niu X, Zhu Y, Pei G, Wu L, Chen L, Zhang W. 2015. Elucidating butanol tolerance mediated by a response regulator Sll0039 in Synechocystis sp. PCC 6803 using a metabolomic approach. Appl Microbiol Biotechnol. 99:1845–1857. doi:10.1007/s00253-015-6374-y
  • Putri SP, Yamamoto S, Tsugawa H, Fukusaki E. 2013. Current metabolomics: technological advances. J Biosci Bioeng. 116:9–16. doi:10.1016/j.jbiosc.2013.01.004
  • Roe JH. 1954. The determination of dextran in blood and urine with anthrone reagent. J Biol Chem. 208:889–896.
  • Roe JH. 1955. The determination of sugar in blood and spinal fluid with anthrone reagent. J Biol Chem. 212:335–343.
  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR. 2001. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. The Plant Cell. 13:11–29. doi:10.1105/tpc.13.1.11
  • Ryan RP, Dow JM. 2008. Diffusible signals and interspecies communication in bacteria. Microbiology. 154:1845–1858. doi:10.1099/mic.0.2008/017871-0
  • Sand W, Gehrke T. 2006. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res Microbiol. 157:49–56. doi:10.1016/j.resmic.2005.07.012
  • Schwarz D, Orf I, Kopka J, Hagemann M. 2013. Recent applications of metabolomics toward cyanobacteria. Metabolites. 3:72–100. doi:10.3390/metabo3010072
  • Stein SE. 1999. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom. 10:770–781. doi:10.1016/S1044-0305(99)00047-1
  • Su Y, Wang J, Shi M, Niu X, Yu X, Gao L, Zhang X, Chen L, Zhang W. 2014. Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. Bioresour Technol. 170:522–529. doi:10.1016/j.biortech.2014.08.018
  • Tang Y, Pingitore F, Mukhopadhyay A, Phan R, Hazen TC, Keasling JD. 2007. Pathway confirmation and flux analysis of central metabolic pathways in desulfovibrio vulgaris hildenborough using gas chromatography-mass spectrometry and fourier transform-ion cyclotron resonance mass spectrometry. J Bacteriol. 189:940–949. doi:10.1128/JB.00948-06
  • Usher K, Kaksonen A, MacLeod I. 2014. Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria. Corros Sci. 83:189–197. doi:10.1016/j.corsci.2014.02.014
  • Videla HA. 1996. Manual of biocorrosion. Boca Raton, FL: CRC Press.
  • Wang LH, He Y, Gao Y, Wu JE, Dong YH, He C, Wang SX, Weng LX, Xu JL, Tay L. 2004. A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol. 51:903–912.
  • Wang J, Zhang C, Rong H. 2014a. Analysis and succession of nitrifying bacteria community structure in sequencing biofilm batch reactor. Appl Microbiol Biotechnol. 98:4581–4587. doi:10.1007/s00253-014-5537-6
  • Wang Y, Shi M, Niu X, Zhang X, Gao L, Chen L, Wang J, Zhang W. 2014b. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Microb Cell Factories.13:1–12. doi:10.1186/s12934-014-0151-y
  • Wäsche S, Horn H, Hempel DC. 2002. Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Res. 36:4775–4784. doi:10.1016/S0043-1354(02)00215-4
  • Wikieł AJ, Datsenko I, Vera M, Sand W. 2014. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment. Bioelectrochemistry. 97:52–60. doi:10.1016/j.bioelechem.2013.09.008
  • Zane GM, Yen H.-c. B., Wall JD. 2010. Effect of the deletion of qmoABC and the promoter-distal gene encoding a hypothetical protein on sulfate reduction in Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol. 76:5500–5509. doi:10.1128/AEM.00691-10
  • Zhang B, Horvath S. 2005. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 4:1544–6115.
  • Zhang W, Culley DE, Scholten JC, Hogan M, Vitiritti L, Brockman FJ. 2006. Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors. Antonie van Leeuwenhoek. 89:221–237. doi:10.1007/s10482-005-9024-z
  • Zhang W, Culley DE, Nie L, Scholten JC. 2007. Comparative transcriptome analysis of Desulfovibrio vulgaris grown in planktonic culture and mature biofilm on a steel surface. Appl Microbiol Biotechnol. 76:447–457. doi:10.1007/s00253-007-1014-9
  • Zhang P, Xu D, Li Y, Yang K, Gu T. 2015. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry. 101:14–21. doi:10.1016/j.bioelechem.2014.06.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.