Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 32, 2016 - Issue 9
430
Views
24
CrossRef citations to date
0
Altmetric
Articles

Cytotoxicity and the effect of cationic peptide fragments against cariogenic bacteria under planktonic and biofilm conditions

, , , , , , , , & show all
Pages 995-1006 | Received 24 Apr 2016, Accepted 25 Jul 2016, Published online: 18 Aug 2016

References

  • Abiko Y, Nishimura M, Kaku T. 2003. Defensins in saliva and the salivary glands. Med Electron Microsc. 36:247–252. doi:10.1007/s00795-003-0225-0
  • Abou Alaiwa MH, Reznikov LR, Gansemer ND, Sheets KA, Horswill AR, Stoltz DA, Zabner J, Welsh MJ. 2014. pH modulates the activity and synergism of the airway surface liquid antimicrobials β-defensin-3 and LL-37. Proc Natl Acad Sci USA. 111:18703–18708. doi:10.1073/pnas.1422091112
  • Amaechi BT, Higham SM, Edgar WM. 1998. Efficacy of sterilisation methods and their effect on enamel demineralisation. Caries Res. 32:441–446. doi:10.1159/000016485
  • Batoni G, Maisetta G, Brancatisano FL, Esin S, Campa M. 2011. Use of antimicrobial peptides against microbial biofilms: advantages and limits. Curr Med Chem. 18:256–279. doi:10.2174/092986711794088399
  • Bedran TB, Mayer MP, Spolidorio DP, Grenier D. 2014. Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. PLOS ONE. 9:e106766. doi:10.1371/journal.pone.0106766
  • Benergossi J, Calixto G, Fonseca-Santos B, Aida KL, de Cássia Negrini TC, Duque C, Gremião MP, Chorilli M. 2015. Highlights in peptide nanoparticle carriers intended to oral diseases. Curr Top Med Chem. 15:345–355. doi:10.2174/1568026615666150108125040
  • Brambilla E, Ionescu A, Gagliani M, Cochis A, Arciola CR, Rimondini L. 2012. Biofilm formation on composite resins for dental restorations: an in situ study on the effect of chlorhexidine mouthrinses. Int J Artif Organs. 35:792–799. doi:10.5301/ijao.5000165
  • Ccahuana-Vásquez RA, Cury JA. 2010. S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization. Braz Oral Res. 24:135–141. doi:10.1590/S1806-83242010000200002
  • Ciornei CD, Sigurdardóttir T, Schmidtchen A, Bodelsson M. 2005. Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother. 49:2845–2850. doi:10.1128/AAC.49.7.2845-2850.2005
  • CLSI – Clinical and Laboratory Standards Institute. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 9th ed. Wayne, PA, CLSI Document, M7–A9.
  • da Silva BR, de Freitas VA, Carneiro VA, Arruda FV, Lorenzón EN, de Aguiar AS, Cilli EM, Cavada BS, Teixeira EH. 2013. Antimicrobial activity of the synthetic peptide Lys-a1 against oral streptococci. Peptides. 42:78–83. doi:10.1016/j.peptides.2012.12.001
  • Dürr UH, Sudheendra US, Ramamoorthy A. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta. 1758:1408–1425.
  • Dye BA, Hsu KL, Afful J. 2015. Prevalence and measurement of dental caries in young children. Pediatr Dent. 37:200–216.
  • Ganz T. 2003. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 3:710–720. doi:10.1038/nri1180
  • Giannelli M, Chellini F, Margheri M, Tonelli P, Tani A. 2008. Effect of chlorhexidine digluconate on different cell types: a molecular and ultrastructural investigation. Toxicol In Vitro. 22:308–317. doi:10.1016/j.tiv.2007.09.012
  • Gordon YJ, Romanowski EG, McDermott AM. 2005. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 30:505–515. doi:10.1080/02713680590968637
  • Hahnel S, Mühlbauer G, Hoffmann J, Ionescu A, Bürgers R, Rosentritt M, Handel G, Häberlein I. 2012. Streptococcus mutans and Streptococcus sobrinus biofilm formation and metabolic activity on dental materials. Acta Odontol Scand. 70:114–121. doi:10.3109/00016357.2011.600703
  • Horowitz HS. 1998. Research issues in early childhood caries. Commun Dent Oral Epidemiol. 26:67–81. doi:10.1111/j.1600-0528.1998.tb02096.x
  • Ji S, Hyun J, Park E, Lee BL, Kim KK, Choi Y. 2007. Susceptibility of various oral bacteria to antimicrobial peptides and to phagocytosis by neutrophils. J Periodontal Res. 42:410–419. doi:10.1111/j.1600-0765.2006.00962.x
  • Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B. 1998. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem. 273:3718–3724. doi:10.1074/jbc.273.6.3718
  • Klüver E, Schulz-Maronde S, Scheid S, Meyer B, Forssmann WG, Adermann K. 2005. Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry. 44:9804–9816. doi:10.1021/bi050272k
  • Lai WW, Hsiao YP, Chung JG, Wei YH, Cheng YW, Yang JH. 2011. Synergistic phototoxic effects of glycolic acid in a human keratinocyte cell line (HaCaT). J Dermatol Sci. 64:191–198. doi:10.1016/j.jdermsci.2011.09.001
  • Lee JK, Chang SW, Perinpanayagam H, Lim SM, Park YJ, Han SH, Baek SH, Zhu Q, Bae KS, Kum KY. 2013. Antibacterial efficacy of a human β-Defensin-3 peptide on multispecies biofilms. J Endod. 39:1625–1629. doi:10.1016/j.joen.2013.07.035
  • Liu S, Zhou L, Li J, Suresh A, Verma C, Foo YH, Yap EP, Tan DT, Beuerman RW. 2008. Linear analogues of human beta-defensin 3: concepts for design of antimicrobial peptides with reduced cytotoxicity to mammalian cells. Chembiochem. 9:964–973. doi:10.1002/cbic.200700560
  • Losso EM, Tavares MC, Silva JY, Urban CA. 2009. Severe early childhood caries: an integral approach. J Pediatr. 85:295–300. doi:http://dx.doi.org/10.1186/s12903-015-0093-8
  • Mattos-Graner RO, Corrêa MSNP, Latorre MRO, Peres RCR, Mayer MPA. 2001. Mutans streptococci oral colonization in 12–30-month-old Brazilian children over a one year follow-up period. J Public Health Dent. 61:161–167. doi:10.1111/j.1752-7325.2001.tb03384.x
  • Mattos-Graner RO, Klein MI, Smith DJ. 2014. Lessons learned from clinical studies: roles of mutans streptococci in the pathogenesis of dental caries. Curr. Oral Health:70–78. REP. 1.
  • Mattos-Graner RO, Napimoga MH, Fukushima K, Duncan MJ, Smith DJ. 2004. Comparative analysis of Gtf isozyme production and diversity in isolates of Streptococcus mutans with different biofilm growth phenotypes. J Clin Microbiol. 42:4586–4592. doi:10.1128/JCM.42.10.4586-4592.2004
  • Mattos-Graner RO, Zelante F, Line RC, Mayer MP. 1998. Association between caries prevalence and clinical, microbiological and dietary variables in 1.0 to 2.5-year-old Brazilian children. Caries Res. 32:319–323. doi:10.1159/000016466
  • Mccormick TS, Weinberg A. 2010. Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontol. 2000(54):195–206. doi:10.1111/j.1600-0757.2010.00373.x
  • Montreekachon P, Nongparn S, Sastraruji T, Khongkhunthian S, Chruewkamlow N, Kasinrerk W, Krisanaprakornkit S. 2014. Favorable interleukin-8 induction in human gingival epithelial cells by the antimicrobial peptide LL-37. Asian Pac J Allergy Immunol. 32:251–260. doi:10.12932/AP0404.32.3.2014
  • O’Sullivan DM, Tinanoff N. 1996. The association of early childhood caries patterns with caries incidence in pre-schoolchildren. J Public Health Dent. 56:81–83. doi:10.1111/j.1752-7325.1996.tb02401.x
  • Ouhara K, Komatsuzawa H, Yamada S, Shiba H, Fujiwara T, Ohara M, Sayama K, Hashimoto K, Kurihara H, Sugai M. 2005. Susceptibilities of periodontopathogenic and cariogenicbacteria to antibacterial peptides, {beta}-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother. 55:888–896. doi:10.1093/jac/dki103
  • Reynolds NL, De Cecco M, Taylor K, Stanton C, Kilanowski F, Kalapothakis J, Seo E, Uhrin D, Campopiano D, Govan J, et al. 2010. Peptide fragments of a beta-defensin derivative with potent bactericidal activity. Antimicrob Agents Chemother. 54:1922–1929. doi:10.1128/AAC.01568-09
  • Rocha Rdos S, Meireles JR, de Moraes Marcílio Cerqueira E.. 2014. Chromosomal damage and apoptosis analysis in exfoliated oral epithelial cells from mouthwash and alcohol users. Genet Mol Biol. 37:702–707. doi:10.1590/S1415-47572014005000022
  • Sahl HG, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A. 2005. Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol. 77:466–475. doi:10.1189/jlb.0804452
  • Sansone C, van Houte J, Joshipura K, Kent R, Margolis HC. 1993. The association of mutans streptococci and non-mutans streptococci capable of acidogenesis at a low pH with dental caries on enamel and root surfaces. J Dent Res. 72:508–516. doi:10.1177/00220345930720020701
  • SB Brasil. Brazilian. Oral Health. Report. 2010. Available at: http://dab.saude.gov.br/CNSB/sbbrasil/arquivos/projeto_sb2010_relatorio_final.pdf. [Published: 30th Dec. 2015].
  • Stewart PS. 2015. Antimicrobial tolerance in biofilms. Microbiol Spectr. 3. doi:10.1128/microbiolspec.MB-0010-2014
  • Tong Z, Zhou L, Jiang W, Kuang R, Li J, Tao R, Ni L. 2011. An in vitro synergetic evaluation of the use of nisin and sodium fluoride or chlorhexidine against Streptococcus mutans. Peptides. 32:2021–2026. doi:10.1016/j.peptides.2011.09.002
  • van Houte J, Lopman J, Kent R. 1996. The final pH of bacteria comprising the predominant flora on sound and carious human root and enamel surfaces. J Dent Res. 75:1008–1014. doi:10.1177/00220345960750040201
  • van Houte J, Sansone C, Joshipura K, Kent R. 1991. In vitro acidogenic potential of mutans streptococci of human smooth-surface plaque associated with initial caries lesions and sound enamel. J Dent Res. 7:1497–1502.
  • Vandamme D, Landuyt B, Luyten W, Schoofs L. 2012. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 280:22–35. doi:10.1016/j.cellimm.2012.11.009
  • Wiesner J, Vilcinskas A. 2010. Antimicrobial peptides – the ancient arm of the human immune system. Virulence. 1:440–464. doi:10.4161/viru.1.5.12983
  • Yeaman MR, Yount NY. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 55:27–55. doi:10.1124/pr.55.1.2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.