Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 33, 2017 - Issue 6
331
Views
11
CrossRef citations to date
0
Altmetric
Articles

Effects of adaptation to carvacrol on Staphylococcus aureus in the planktonic and biofilm phases

, , , , &
Pages 470-480 | Received 07 Feb 2017, Accepted 19 Apr 2017, Published online: 18 May 2017

References

  • Abreu AC, McBain AJ, Simões M. 2012. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep. 29:1007–1021. doi: 10.1039/c2np20035j
  • Becerril R, Nerín C, Gómez-Lus R. 2012. Evaluation of bacterial resistance to essential oils and antibiotics after exposure to oregano and cinnamon essential oils. Foodborne Pathog Dis. 9:699–705. doi: 10.1089/fpd.2011.1097
  • Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods. Int J Food Microbiol. 94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022
  • Center for Food Safety and Applied Nutrition. 2006. EAFUS: a food additive database. Washington (DC): US Food and Drug Administration, Center for Food and Applied Nutrition.
  • Clinical and Laboratory Standards Institute. 2009. Methods for dilution antimicrobial Susceptibility tests for bacteria that grow aerobically; approved standard. 7th ed. Document M7-A7, Wayne, (PA): CLSI.
  • Cowan MM. 1999. Plant products as antimicrobial agents. Clin Microbiol Rev. 12:564–582. doi: 10515903
  • Dastgheyb SS, Otto M. 2015. Staphylococcal adaptation to diverse physiologic niches: an overview of transcriptomic and phenotypic changes in different biological environments. Future Microbiol. 10:1981–1995. doi: 10.2217/fmb.15.116
  • Denich TJ, Beaudette LA, Lee H, Trevors JT. 2003. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods. 52:149–182. doi: 10.1016/S0167-7012(02)00155-0
  • Dorman HJ, Deans SG. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 88:308–316. doi: 10.1046/j.1365-2672.2000.00969.x
  • Dubois-Brissonnet F, Naïtali M, Mafu AA, Briandet R. 2011. Induction of fatty acid composition modifications and tolerance to biocides in Salmonella enterica serovar Typhimurium by plant-derived terpenes. Appl Environ Microbiol. 77:906–910. doi: 10.1128/AEM.01480-10
  • European Commission. 1999. Commission decision of 23 February 1999 adopting a register of flavouring substances used in or on foodstuffs drawn up in application of regulation (EC) No 2232/96 of the European Parliament and of the Council on 28 October 1996. 1999/217/EC. Official J. Mar 27; L084: 1–137.
  • Fadli M, Chevalier J, Hassani L, Mezrioui NE, Pagès JM. 2014. Natural extracts stimulate membrane-associated mechanisms of resistance in Gram-negative bacteria. Lett Appl Microbiol. 58:472–477. doi: 10.1111/lam.2014.58.issue-5
  • Gomes Neto NJ, Luz IS, Honório WG, Tavares AG, de Souza EL. 2012. Rosmarinus officinalis L. essential oil and the related compound 1,8-cineole do not induce direct or cross-protection in Listeria monocytogenes ATCC 7644 cultivated in meat broth. Can J Microbiol. 58:973–981. doi: 10.1139/w2012-070
  • Gomes Neto NJ, Luz IS, Tavares AG, Honório VG, Magnani M, De Souza EL. 2012. Rosmarinus officinalis L. essential oil and its majority compound 1,8-cineole at sublethal amounts induce no direct and cross protection in Staphylococcus aureus ATCC 6538. Foodborne Pathog Dis. 9:1071–1076. doi: 10.1089/fpd.2012.1258
  • Gomes Neto NJ, Magnani M, Chueca B, García-Gonzalo D, Pagán R, de Souza EL. 2015. Influence of general stress-response alternative sigma factors σ(S) (RpoS) and σ(B) (SigB) on bacterial tolerance to the essential oils from Origanum vulgare L. and Rosmarinus officinalis L. and pulsed electric fields. Int J Food Microbiol. 211:32–37. doi: 10.1016/j.ijfoodmicro.2015.06.030
  • Hammer KA, Carson CF, Riley TV. 2012. Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob Agents Chemother. 56:909–915. doi: 10.1128/AAC.05741-11
  • Inouye S, Takizawa T, Yamaguchi H. 2001. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother. 47:565–573. doi: 10.1093/jac/47.5.565
  • Kahl BC. 2014. Small colony variants (SCVs) of Staphylococcus aureus – a bacterial survival strategy. Infect Genet Evol. 21:515–522. doi: 10.1016/j.meegid.2013.05.016
  • Keren I, Kaldalu N, Spoering A, Yipeng W, Lewis K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett. 230:13–18. doi: 10.1016/S0378-1097(03)00856-5
  • Knowles JR, Roller S, Murray DB, Naidu AS. 2005. Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella enterica serovar Typhimurium. Appl Environ Microbiol. 71:797–803. doi: 10.1128/AEM.71.2.797-803.2005
  • Kogan G, Sadovskaya I, Chaignon P, Chokr A, Jabbouri S. 2006. Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesion. FEMS Microbiol Lett. 255:11–16. doi: 10.1111/fml.2006.255.issue-1
  • Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol. 91:453–462. doi: 10.1046/j.1365-2672.2001.01428.x
  • Luz IS, Gomes-Neto NJ, Magnani M, de Souza EL. 2015. Assessment of tolerance induction by Origanum vulgare L. essential oil or carvacrol in Pseudomonas aeruginosa cultivated in a meat-based broth and in a meat model. Food Sci Technol Int. 21:571–580. doi: 10.1177/1082013214554467
  • Luz IDS, Gomes Neto NJ, Tavares AG, Magnani M, de Souza EL. 2012. Exposure of Listeria monocytogenes to sublethal amounts of Origanum vulgare L. essential oil or carvacrol in a food-based medium does not induce direct or cross protection. Food Res Int. 48:667–672. doi: 10.1016/j.foodres.2012.05.026
  • Luz IDS, Gomes Neto NJ, Tavares AG, Nunes PC, Magnani M, de Souza EL. 2012. Evidence for lack of acquisition of tolerance in Salmonella enterica serovar Typhimurium ATCC 14028 after exposure to subinhibitory amounts of Origanum vulgare L. essential oil and carvacrol. Appl Environ Microbiol. 78:5021–5024. doi: 10.1128/AEM.00605-12
  • Luz IS, Gomes Neto NJ, Tavares AG, Nunes PC, Magnani M, de Souza EL. 2013. Lack of induction of direct protection or cross-protection in Staphylococcus aureus by sublethal concentrations of Origanum vulgare L. essential oil and carvacrol in a meat-based medium. Arch Microbiol. 195:587–593. doi: 10.1007/s00203-013-0907-5
  • Luz IDS, de Melo AN, Bezerra TK, Madruga MS, Magnani M, de Souza EL. 2014. Sublethal amounts of Origanum vulgare L. essential oil and carvacrol cause injury and changes in membrane fatty acid of Salmonella Typhimurium cultivated in a meat broth. Foodborne Pathog Dis. 11:357–361. doi: 10.1089/fpd.2013.1695
  • Magi G, Marini E, Facinelli B. 2015. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A streptococci. Front Microbiol. 6:165. doi: 10.3389/fmicb.2015.00165
  • McMahon MA, Blair IS, Moore JE, McDowell DA. 2007. Habituation to sub-lethal concentrations of tea tree oil (Melaleuca alternifolia) is associated with reduced susceptibility to antibiotics in human pathogens. J Antimicrob Chemother. 59:125–127. doi: 10.1093/jac/dkl443
  • McMahon MA, Tunney MM, Moore JE, Blair IS, Gilpin DF, McDowell DA. 2008. Changes in antibiotic susceptibility in staphylococci habituated to sub-lethal concentrations of tea tree oil (Melaleuca alternifolia). Lett Appl Microbiol. 47:263–268.doi: 10.1111/lam.2008.47.issue-4
  • McMahon MAS, Xu J, Moore JE, Blair IS, McDowell DA. 2007. Environmental stress and antibiotic resistance in food-related pathogens. Appl Environ Microbiol. 73:211–217. doi: 10.1128/AEM.00578-06
  • Nostro A, Blanco AR, Cannatelli MA, Enea V, Flamini G, Morelli I, Sudano Roccaro A, Alonzo V. 2004. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol Lett. 30(2):191–195. doi: 10.1016/S0378-1097(03)00890-5
  • Nostro A, Marino A, Blanco AR, Cellini L, Di Giulio M, Pizzimenti F, Sudano Roccaro A, Bisignano G. 2009. In vitro activity of carvacrol against staphylococcal preformed biofilm by liquid and vapour contact. J Med Microbiol. 58:791–797. doi: 10.1099/jmm.0.009274-0
  • Nostro A, Papalia T. 2012. Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat AntiInfect Drug Discov. 7:28–35. doi: 10.1111/j.1472-765X.2006.01938.x
  • Nostro A, Scaffaro R, Botta L, Filocamo A, Marino A, Bisignano G. 2015. Effect of temperature on the release of carvacrol and cinnamaldehyde incorporated into polymeric systems to control growth and biofilms of Escherichia coli and Staphylococcus aureus. Biofouling. 31:639–649. doi: 10.1080/08927014.2015.1079703
  • Nostro A, Scaffaro R, D’Arrigo M, Botta L, Filocamo A, Marino A, Bisignano G. 2012. Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and anti-biofilm activities. Appl Microbiol Biotechnol. 96:1029–1038. doi: 10.1007/s00253-012-4091-3
  • Nostro A, Sudano Roccaro A, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR. 2007. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol. 56:519–523. doi: 10.1099/jmm.0.46804-0
  • Olsen I. 2015. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. 34:877–886. doi: 10.1007/s10096-015-2323-z
  • Singh R, Ray P, Das A, Sharma M. 2009. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol. 58:1067–1073. doi: 10.1099/jmm.0.009720-0
  • Thomsen NA, Hammer KA, Riley TV, Belkum AV, Carson CF. 2013. Effect of habituation to tea tree (Melaleuca alternifolia) oil on the subsequent susceptibility of Staphylococcus spp. to antimicrobials, triclosan, tea tree oil, terpinen-4-ol and carvacrol. Int J Antimicrob Agents. 41:343–351. doi: 10.1016/j.ijantimicag.2012.12.011
  • Tuchscherr L, Heitmann V, Hussain M, Viemann D, Roth J, von Eiff C, Peters G, Becker K, Löffler B. 2010. Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis. 202:1031–1040. doi: 10.1086/653019
  • Ultee A, Kets EPW, Alberda M, Hoekstra FA, Smid EJ. 2000. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Arch Microbiol. 174:233–238. doi: 10.1007/s002030000199
  • Wang LH, Wang MS, Zeng XA, Zhang ZH, Gong DM, Huang YB. 2016. Membrane destruction and DNA binding of Staphylococcus aureus cells induced by carvacrol and its combined effect with a pulsed electric field. J Agric Food Chem. 64:6355–6363. doi: 10.1021/acs.jafc.6b02507
  • Yap PS, Yiap BC, Ping HC, Lim SH. 2014. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. 8:6–14. doi: 10.2174/1874285801408010006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.