Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 33, 2017 - Issue 8
2,658
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

In vitro biofilm models to study dental caries: a systematic review

, , , &
Pages 661-675 | Received 23 Dec 2016, Accepted 06 Jul 2017, Published online: 09 Aug 2017

References

  • Angker L, Swain MV, Wong L, Sissons C. 2011. The effects of fluoride and mineralising treatments on plaque microcosm Ca, P and F, pH responses and cariogenicity. N Z Dent J. 107:12–18.
  • Arthur RA, Waeiss RA, Hara AT, Lippert F, Eckert GJ, Zero DT. 2013. A defined-multispecies microbial model for studying enamel caries development. Caries Res. 47(4):318–324. doi: 10.1159/00034705010.1159/000347050
  • Azevedo MS, van de Sande FH, Maske TT, Signori C, Romano AR, Cenci MS. 2014. Correlation between the cariogenic response in biofilms generated from saliva of mother/child pairs. Biofouling. 30:903–909. doi: 10.1080/08927014.2014.94886810.1080/08927014.2014.948868
  • Azevedo MS, van de Sande FH, Romano AR, Cenci MS. 2011. Microcosm biofilms originating from children with different caries experience have similar cariogenicity under successive sucrose challenges. Caries Res. 45(6):510–517. doi: 10.1159/00033121010.1159/000331210
  • Bradshaw DJ, Marsh PD. 1994. Effect of sugar alcohols on the composition and metabolism of a mixed culture of oral bacteria grown in a chemostat. Caries Res. 28:251–256. doi: 10.1159/00026197710.1159/000261977
  • Bradshaw DJ, Marsh PD. 1998. Analysis of pH–driven disruption of oral microbial communities in vitro. Caries Res. 32:456–462. doi: 10.1159/00001648710.1159/000016487
  • Bradshaw DJ, McKee AS, Marsh PD. 1989. Effects of carbohydrate pulses and ph on population shifts within oral microbial communities in vitro. J Dent Res 68:1298–1302. doi: 10.1177/0022034589068009010110.1177/00220345890680090101
  • Bradshaw DJ, Marsh PD, Hodgson RJ, Visser JM. 2002. Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Caries Res. 36:81–86. doi: 10.1159/00005786410.1159/000057864
  • Bradshaw DJ, Marsh PD, Schilling KM, Cummins D. 1996 Feb. A modified chemostat system to study the ecology of oral biofilms. J Appl Bacteriol. 80:124–130. doi: 10.1111/jam.1996.80.issue-210.1111/jam.1996.80.issue-2
  • Busscher HJ, van der Mei HC. 2000. Community structure and co-operation in biofilms. Cambridge (UK): Cambridge University Press; p. 25–36. doi: 10.1017/CBO978051175481410.1017/CBO9780511754814
  • Buzalaf MA, Charone S, Tjäderhane L. 2015. Role of host-derived proteinases in dentine caries and erosion. Caries Res. 49(1):30–37. doi: 10.1159/00038088510.1159/000380885
  • Cavalcanti YW, Bertolini MM, da Silva WJ, Del-Bel-Cury AA, Tenuta LM, Cury JA. 2014. A three-species biofilm model for the evaluation of enamel and dentin demineralization. Biofouling. 30:579–588. doi: 10.1080/08927014.2014.90554710.1080/08927014.2014.905547
  • Ccahuana-Vásquez RA, Cury JA. 2010. S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization. Braz Oral Res. 24:135–141. doi: 10.1590/S1806-8324201000020000210.1590/S1806-83242010000200002
  • Cenci MS, Pereira-Cenci T, Cury JA, Ten Cate JM. 2009. Relationship between gap size and dentine secondary caries formation assessed in a microcosm biofilm model. Caries Res. 43:97–102. doi: 10.1159/00020934110.1159/000209341
  • Cury JA, Rebelo MA, Del Bel Cury AA, Derbyshire MT, Tabchoury CP. 2000. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res. 34:491–497. doi: 10.1159/00001662910.1159/000016629
  • Cutress TW, Sissons CH, Pearce EI, Wong L, Anderssén K, Angmar-Månsson B. 1995. Effects of fluoride-supplemented sucrose on experimental dental caries and dental plaque PH. Adv Dent Res. 9:14–20. doi: 10.1177/0895937495009001010110.1177/08959374950090010101
  • Davey ME, O'toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 64:847–867. doi: 10.1128/MMBR.64.4.847-867.200010.1128/MMBR.64.4.847-867.2000
  • Deng DM, Ten Cate JM. 2004. Demineralization of dentin by Streptococcus mutans biofilms grown in the constant depth film fermentor. Caries Res. 38:54–61.
  • Deng DM, Buijs MJ, Ten Cate JM. 2004. The effects of substratum on the pH response of Streptococcus mutans biofilms and on the susceptibility to 0.2% chlorhexidine. Eur J Oral Sci. 112:42–47. doi: 10.1111/eos.2004.112.issue-110.1111/eos.2004.112.issue-1
  • Deng DM, van Maele C, Ten Cate JM. 2005. Caries-preventive agents induce remineralization of dentin in a biofilm model. Caries Res. 39:216–223. doi: 10.1159/00008480110.1159/000084801
  • Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. 2010. The human oral microbiome. J Bacteriol. 192:5002–5017. doi: 10.1128/JB.00542-1010.1128/JB.00542-10
  • Diercke K, Lussi A, Kersten T, Seemann R. 2009. Isolated development of inner (wall) caries like lesions in a bacterial-based in vitro model. Clin Oral Investig. 13:439–444. doi: 10.1007/s00784-009-0250-z10.1007/s00784-009-0250-z
  • Donoghue HD, Perrons CJ. 1991. Effect of nutrients on defined bacterial plaques and Streptococcus mutans C67-1 implantation in a model mouth. Caries Res. 25:108–115. doi: 10.1159/00026135210.1159/000261352
  • Edlund A, Yang Y, Hall AP, Guo L, Lux R, He X, Nelson KE, Nealson KH, Yooseph S, Shi W, et al. 2013. An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. Microbiome. 1:1–25.
  • Elias S, Banin E. 2012. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 36:990–1004. doi: 10.1111/j.1574-6976.2012.00325.x10.1111/j.1574-6976.2012.00325.x
  • Exterkate RA, Crielaard W, Ten Cate JM. 2010. Different response to amine fluoride by Streptococcus mutans and polymicrobial biofilms in a novel high-throughput active attachment model. Caries Res. 44:372–379. doi: 10.1159/00031654110.1159/000316541
  • Fernández CE, Giacaman RA, Tenuta LM, Cury JA. 2015. Effect of the probiotic Lactobacillus rhamnosus LB21 on the cariogenicity of Streptococcus mutans UA159 in a dual-species biofilm model. Caries Res. 49:583–590. doi: 10.1159/00043931510.1159/000439315
  • Fernández CE, Tenuta LMA, Cury JA. 2016. Validation of a cariogenic biofilm model to evaluate the effect of fluoride on enamel and root dentine demineralization. PLoS ONE. 11:e0146478. doi: 10.1371/journal.pone.014647810.1371/journal.pone.0146478
  • Filoche SK, Anderson SA, Sissons CH. 2004. Biofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutans. Oral Microbiol Immunol. 19:322–326. doi: 10.1111/omi.2004.19.issue-510.1111/omi.2004.19.issue-5
  • Filoche SK, Soma KJ, Sissons CH. 2007. Caries-related plaque microcosm biofilms developed in microplates. Oral Microbiol Immunol. 22:73–79. doi: 10.1111/omi.2007.22.issue-210.1111/omi.2007.22.issue-2
  • Fontana M, Dunipace AJ, Gregory RL, Noblitt TW, Li Y, Park KK, Stookey GK. 1996. An in vitro microbial model for studying secondary caries formation. Caries Res. 30:112–118. doi: 10.1159/00026214610.1159/000262146
  • Fontana M, Buller TL, Dunipace AJ, Stookey GK, Gregory RL. 2000. An In vitro microbial-caries model used to study the efficacy of antibodies to Streptococcus mutans surface proteins in preventing dental caries. Clin Diagn Lab Immunol. 7:49–54.
  • Fontana M, González-Cabezas C, Haider A, Stookey GK. 2002. Inhibition of secondary caries lesion progression using fluoride varnish. Caries Res. 36:129–135. doi: 10.1159/00005787110.1159/000057871
  • Fontana M, Haider A, González-Cabezas C. 2004. Caries lesion development and biofilm composition responses to varying demineralization times and sucrose exposures. Biofilms. 1:229–237. doi: 10.1017/S147905050400147410.1017/S1479050504001474
  • Giacaman RA, Campos P, Muñoz-Sandoval C, Castro RJ. 2013. Cariogenic potential of commercial sweeteners in an experimental biofilm caries model on enamel. Arch Oral Biol. 58:1116–1122. doi: 10.1016/j.archoralbio.2013.03.00510.1016/j.archoralbio.2013.03.005
  • Giacaman RA, Muñoz MJ, Ccahuana-Vasquez RA, Muñoz-Sandoval C, Cury JA. 2012. Effect of fluoridated milk on enamel and root dentin demineralization evaluated by a biofilm caries model. Caries Res. 46:460–466. doi: 10.1159/00033942810.1159/000339428
  • Giacaman RA, Jobet-Vila P, Muñoz-Sandoval C. 2015. Fatty acid effect on sucrose-induced enamel demineralization and cariogenicity of an experimental biofilm–caries model. Odontology. 103:169–176. doi: 10.1007/s10266-014-0154-510.1007/s10266-014-0154-5
  • Giertsen E, Arthur RA, Guggenheim B. 2011. Effects of xylitol on survival of mutans streptococci in mixed-six-species in vitro biofilms modelling supragingival plaque. Caries Res. 45:31–39. doi: 10.1159/00032264610.1159/000322646
  • Goeres DM, Loetterle LR, Hamilton MA, Murga R, Kirby DW, Donlan RM. 2005. Statistical assessment of a laboratory method for growing biofilms. Microbiology. 151:757–762. doi: 10.1099/mic.0.27709-010.1099/mic.0.27709-0
  • Guggenheim B, Giertsen E, Schupbach P, Shapiro S. 2001. Validation of an in vitro biofilm model of supragingival plaque. J Dent Res. 80:363–370. doi: 10.1177/0022034501080001120110.1177/00220345010800011201
  • Hodgson RJ, Lynch RJ, Watson GK, Labarbe R, Treloar R, Allison C. 2001. A continuous culture biofilm model of cariogenic responses. J Appl Microbiol. 90:440–448. doi: 10.1046/j.1365-2672.2001.01263.x10.1046/j.1365-2672.2001.01263.x
  • Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. 2015. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 94:650–658. doi: 10.1177/002203451557327210.1177/0022034515573272
  • Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, Ten Cate JM, Crielaard W. 2008. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res. 87:1016–1020. doi: 10.1177/15440591080870110410.1177/154405910808701104
  • Klimek J, Hellwig E, Ahrens G. 1982. Effect of plaque on fluoride stability in the enamel after amine fluoride application in the artificial mouth. Dtsch Zahnarztl Z. 37:836–840.
  • Kuper NK, van de Sande FH, Opdam NJ, Bronkhorst EM, de Soet JJ, Cenci MS, Huysmans MC. 2015. Restoration materials and secondary caries using an in vitro biofilm model. J Dent Res. 94:62–68. doi: 10.1177/002203451455324510.1177/0022034514553245
  • Lee VA, Karthikeyan R, Rawls HR, Amaechi BT. 2010. Anti-cariogenic effect of a cetylpyridinium chloride-containing nanoemulsion. J Dent. 38:742–749. doi: 10.1016/j.jdent.2010.06.00110.1016/j.jdent.2010.06.001
  • Leme AF, Koo H, Bellato CM, Bedi G, Cury JA. 2006. The role of sucrose in cariogenic dental biofilm formation – new insight. J Dent Res. 85:878–887. doi: 10.1177/15440591060850100210.1177/154405910608501002
  • Li YH, Bowden GH. 1994. The effect of environmental pH and fluoride from the substratum on the development of biofilms of selected oral bacteria. J Dent Res. 73:1615–1626.
  • Li Y, Carrera C, Chen R, Li J, Lenton P, Rudney JD, Jones RS, Aparicio C, Fok A. 2014. Degradation in the dentin-composite interface subjected to multi-species biofilm challenges. Acta Biomater. 10:375–383. doi: 10.1016/j.actbio.2013.08.03410.1016/j.actbio.2013.08.034
  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 6:e1000100. doi: 10.1371/journal.pmed.100010010.1371/journal.pmed.1000100
  • Lindh L, Aroonsang W, Sotres J, Arnebrant T. 2014. Salivary pellicles. Monogr Oral Sci. 24:30–39. doi: 10.1159/00035878210.1159/000358782
  • Lynch RJ, Ten Cate JM. 2006a. The effect of adjacent dentine blocks on the demineralisation and remineralisation of enamel in vitro. Caries Res. 40:38–42.
  • Lynch RJ, Ten Cate JM. 2006b. Effect of calcium glycerophosphate on demineralization in an in vitro biofilm model. Caries Res. 40:142–147. doi: 10.1159/00009106110.1159/000091061
  • Maltz M, Beighton D. 2012. Multidisciplinary research agenda for novel antimicrobial agents for caries prevention and treatment. Adv Dent Res. 24:133–136. doi: 10.1177/002203451245304910.1177/0022034512453049
  • Marsh PD. 2006. Dental plaque as a biofilm and a microbial community - implications for health and disease. BMC Oral Health. 6(Suppl 1):S14. doi: 10.1186/1472-6831-6-S1-S1410.1186/1472-6831-6-S1-S14
  • Maske TT, Brauner KV, Nakanishi L, Arthur RA, van de Sande FH, Cenci MS. 2016. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies. Biofouling. 32:339–348. doi: 10.1080/08927014.2015.113082410.1080/08927014.2015.1130824
  • Maske TT, Isolan CP, van de Sande FH, Peixoto AC, Faria-e-Silva AL, Cenci MS, Moraes RR. 2015. A biofilm cariogenic challenge model for dentin demineralization and dentin bonding analysis. Clin Oral Investig. 19:1047–1053. doi: 10.1007/s00784-014-1331-110.1007/s00784-014-1331-1
  • McBain AJ. 2009. Chapter 4: In vitro biofilm models: an overview. Adv Appl Microbiol. 69:99–132. doi: 10.1016/S0065-2164(09)69004-310.1016/S0065-2164(09)69004-3
  • McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Gilbert P. 2003a. Effects of a chlorhexidine gluconate-containing mouthwash on the vitality and antimicrobial susceptibility of in vitro oral bacterial ecosystems. Appl Environ Microbiol. 69:4770–4776. doi: 10.1128/AEM.69.8.4770-4776.200310.1128/AEM.69.8.4770-4776.2003
  • McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Gilbert P. 2003b. Effects of triclosan-containing rinse on the dynamics and antimicrobial susceptibility of in vitro plaque ecosystems. Antimicrob Agents Chemother. 47:3531–3538. doi: 10.1128/AAC.47.11.3531-3538.200310.1128/AAC.47.11.3531-3538.2003
  • McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Gilbert P. 2003c. Growth and molecular characterization of dental plaque microcosms. J Appl Microbiol. 94:655–664. doi: 10.1046/j.1365-2672.2003.01876.x10.1046/j.1365-2672.2003.01876.x
  • Mei ML, Chu CH, Lo ECM, Samaranayake LP. 2013. Preventing root caries development under oral biofilm challenge in an artificial mouth. Med Oral Patol Oral Cir Bucal. 18:e557–e563.
  • Mei ML, Li Q-L, Chu C-H, Lo EC-M, Samaranayake LP. 2013. Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries. Ann Clin Microbiol Antimicrob. 12:4. doi: 10.1186/1476-0711-12-410.1186/1476-0711-12-4
  • Muñoz-Sandoval C, Muñoz-Cifuentes MJ, Giacaman RA, Ccahuana-Vasquez RA, Cury JA. 2012. Effect of bovine milk on Streptococcus mutans biofilm cariogenic properties and enamel and dentin demineralization. Pediatr Dent. 34:e197–e201.
  • Nassar HM, González-Cabezas C. 2011. Effect of gap geometry on secondary caries wall lesion development. Caries Res. 45:346–352. doi: 10.1159/00032938410.1159/000329384
  • Novick A, Szilard L. 1950. Description of the chemostat. Science. 112:715–716. doi: 10.1126/science.112.2920.71510.1126/science.112.2920.715
  • Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D. 2013. Dental caries from a molecular microbiological perspective. Caries Res. 47:89–102. doi: 10.1159/00034536710.1159/000345367
  • Parisotto TM, Steiner-Oliveira C, Duque C, Peres RC, Rodrigues LK, Nobre-dos-Santos M. 2010. Relationship among microbiological composition and presence of dental plaque, sugar exposure, social factors and different stages of early childhood caries. Arch Oral Biol. 55:365–373. doi: 10.1016/j.archoralbio.2010.03.00510.1016/j.archoralbio.2010.03.005
  • Pearce EIF, Sissons CH, Coleman M, Wang X, Anderson SA, Wong L. 2002. The effect of sucrose application frequency and basal nutrient conditions on the calcium and phosphate content of experimental dental plaque. Caries Res. 36:87–92. doi: 10.1159/00005786510.1159/000057865
  • Peixoto A, Bicalho A, Isolan C, Maske T, Moraes R, Cenci M, Soares C, Faria-e-Silva ESA. 2015. Bonding of adhesive luting agents to caries-affected dentin induced by a microcosm biofilm model. Oper Dent. 40:E102–E111. doi: 10.2341/14-169-L10.2341/14-169-L
  • Perrons CJ, Donoghue HD. 1990. Colonization resistance of defined bacterial plaques to Streptococcus mutans implantation on teeth in a model mouth. J Dent Res. 69:483–488. doi: 10.1177/0022034590069002130110.1177/00220345900690021301
  • Peters AC, Wimpenny JW. 1988. A constant-depth laboratory model film fermentor. Biotechnol Bioeng. 32:263–270. doi: 10.1002/(ISSN)1097-029010.1002/(ISSN)1097-0290
  • van der Ploeg JR, Guggenheim B. 2004. Deletion of gtfC of Streptococcus mutans has no influence on the composition of a mixed-species in vitro biofilm model of supragingival plaque. Eur J Oral Sci. 112:433–438. doi: 10.1111/eos.2004.112.issue-510.1111/eos.2004.112.issue-5
  • Pratten J, Wilson M. 1999. Antimicrobial susceptibility and composition of microcosm dental plaques supplemented with sucrose. Antimicrob Agents Chemother. 43:1595–1599.
  • Ribeiro CCC, Ccahuana-Vásquez RA, Carmo CD, Alves CMC, Leitão TJ, Vidotti LR, Cury JA. 2012. The effect of iron on Streptococcus mutans biofilm and on enamel demineralization. Braz Oral Res. 26:300–305. doi: 10.1590/S1806-8324201200040000310.1590/S1806-83242012000400003
  • Rudney JD, Chen R, Lenton P, Li J, Li Y, Jones RS, Reilly C, Fok AS, Aparicio C. 2012. A reproducible oral microcosm biofilm model for testing dental materials. J Appl Microbiol. 113:1540–1553. doi: 10.1111/jam.2012.113.issue-610.1111/jam.2012.113.issue-6
  • Salli KM, Ouwehand AC. 2015. The use of in vitro model systems to study dental biofilms associated with caries: a short review. J Oral Microbiol. 7:26149. doi: 10.3402/jom.v7.2614910.3402/jom.v7.26149
  • van de Sande FH, Azevedo MS, Lund RG, Huysmans MC, Cenci MS. 2011. An in vitro biofilm model for enamel demineralization and antimicrobial dose-response studies. Biofouling. 27:1057–1063. doi: 10.1080/08927014.2011.62547310.1080/08927014.2011.625473
  • Sarkis-Onofre R, Skupien JA, Cenci MS, Moraes RR, Pereira-Cenci T. 2014. The role of resin cement on bond strength of glass-fiber posts luted into root canals: a systematic review and meta-analysis of in vitro studies. Oper Dent. 39:E31–E44. doi: 10.2341/13-070-LIT10.2341/13-070-LIT
  • Sarkis-Onofre R, Cenci MS, Demarco FF, Lynch CD, Fleming PS, Pereira-Cenci T, Moher D. 2015. Use of guidelines to improve the quality and transparency of reporting oral health research. J Dent. 43:397–404. doi: 10.1016/j.jdent.2015.01.00610.1016/j.jdent.2015.01.006
  • Schwendicke F, Dörfer C, Kneist S, Meyer-Lueckel H, Paris S. 2014. Cariogenic effects of probiotic Lactobacillus rhamnosus GG in a dental biofilm model. Caries Res. 48:186–192. doi: 10.1159/00035590710.1159/000355907
  • Schwendicke F, Horb K, Kneist S, Dörfer C, Paris S. 2014. Effects of heat-inactivated Bifidobacterium BB12 on cariogenicity of Streptococcus mutans in vitro. Arch Oral Biol. 59:1384–1390. doi: 10.1016/j.archoralbio.2014.08.01210.1016/j.archoralbio.2014.08.012
  • Schwendicke F, Eggers K, Meyer-Lueckel H, Dörfer C, Kovalev A, Gorb S, Paris S. 2015. In vitro induction of residual caries lesions in dentin: comparative mineral loss and nano-hardness analysis. Caries Res. 49:259–265. doi: 10.1159/00037189710.1159/000371897
  • Seemann R, Bizhang M, Klück I, Loth J, Roulet JF. 2005. A novel in vitro microbial-based model for studying caries formation – development and initial testing. Caries Res. 39:185–190. doi: 10.1159/00008479610.1159/000084796
  • Seemann R, Klück I, Bizhang M, Roulet JF. 2005. Secondary caries-like lesions at fissure sealings with Xeno III and Delton – an in vitro study. J Dent. 33:443–449. doi: 10.1016/j.jdent.2004.11.00810.1016/j.jdent.2004.11.008
  • Seemann R, Klück I, Kage A. 2006. An in vitro microbial-based model for studying caries-preventive agents. Acta Odontol Scand. 64:27–30. doi: 10.1080/0001635050033109610.1080/00016350500331096
  • Selwitz RH, Ismail AI, Pitts NB. 2007. Dental caries. Lancet. 369:51–59. doi: 10.1016/S0140-6736(07)60031-210.1016/S0140-6736(07)60031-2
  • Shu M, Wong L, Miller JH, Sissons CH. 2000. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system. Arch of Oral Biol. 45:27–40. doi: 10.1016/S0003-9969(99)00111-910.1016/S0003-9969(99)00111-9
  • Shunmugaperumal T. 2010. Biofilm eradication and prevention: a pharmaceutical approach to medical devices infections. p. 116–151. Hoboken (US): Wiley. doi: 10.1002/978047064046310.1002/9780470640463
  • Signori C, van de Sande FH, Maske TT, de Oliveira EF, Cenci MS. 2016. Influence of the inoculum source on the cariogenicity of in vitro microcosm iobfilms. Caries Res. 50:97–103. doi: 10.1159/00044353710.1159/000443537
  • Sim CP, Dashper SG, Reynolds EC. 2016. Oral microbial biofilm models and their application to the testing of anticariogenic agents. J Dent. 50:1–11. doi: 10.1016/j.jdent.2016.04.01010.1016/j.jdent.2016.04.010
  • Sissons CH. 1997. Artificial dental plaque biofilm model systems. Adv Dent Res. 11:110–126. doi: 10.1177/0895937497011001020110.1177/08959374970110010201
  • Sissons CH, Cutress TW. 1987. In-vitro urea-dependent pH-changes by human salivary bacteria and dispersed, artificial-mouth, bacterial plaques. Arch Oral Biol. 32:181–189.doi: 10.1016/0003-9969(87)90132-410.1016/0003-9969(87)90132-4
  • Sissons CH, Cutress TW, Pearce EI. 1985. Kinetics and product stoichiometry of ureolysis by human salivary bacteria and artificial mouth plaques. Arch Oral Biol. 30:781–790. doi: 10.1016/0003-9969(85)90132-310.1016/0003-9969(85)90132-3
  • Sissons CH, Cutress TW, Hoffman MP, Wakefield JSJ. 1991. A multi-station dental plaque microcosm (artificial mouth) for the study of plaque growth, metabolism, pH, and mineralization. J Dent Res. 70:1409–1416. doi: 10.1177/0022034591070011030110.1177/00220345910700110301
  • Sissons CH, Cutress TW, Faulds G, Wong L. 1992. pH Responses to sucrose and the formation of pH gradients in thick ‘artificial mouth’ microcosm plaques. Arch Oral Biol. 37:913–922. doi: 10.1016/0003-9969(92)90062-D10.1016/0003-9969(92)90062-D
  • Sissons CH, Hancock EM, Cutress TW. 1988. The source of variation in ureolysis in artificial plaques cultured from human salivary bacteria. Arch Oral Biol. 33:721–726. doi: 10.1016/0003-9969(88)90005-210.1016/0003-9969(88)90005-2
  • Sissons CH, Wong L, Hancock EM, Cutress TW. 1994a. pH gradients induced by urea metabolism in ‘artificial mouth’ microcosm plaques. Arch Oral Biol. 39:507–511. doi: 10.1016/0003-9969(94)90147-310.1016/0003-9969(94)90147-3
  • Sissons CH, Wong L, Hancock EM, Cutress TW. 1994b. The pH response to urea and the effect of liquid flow in ‘artificial mouth’ microcosm plaques. Arch Oral Biol. 39:497–505. doi: 10.1016/0003-9969(94)90146-510.1016/0003-9969(94)90146-5
  • Sissons CH, Wong L, Cutress TW. 1995. Patterns and rates of growth of microcosm dental plaque biofilms. Oral Microbiol Immunol. 10:160–167. doi: 10.1111/omi.1995.10.issue-310.1111/omi.1995.10.issue-3
  • Sissons CH, Wong L, Cutress TW. 1996. Inhibition by ethanol of the growth of biofilm and dispersed microcosm dental plaques. Arch Oral Biol. 41:27–34. doi: 10.1016/0003-9969(95)00103-410.1016/0003-9969(95)00103-4
  • Sissons CH, Anderson SA, Wong L, Coleman MJ, White DC. 2007. Microbiota of plaque microcosm biofilms: effect of three times daily sucrose pulses in different simulated oral environments. Caries Res. 41:413–422. doi: 10.1159/00010480110.1159/000104801
  • Sissons CH, Wong L, Shu M. 1998. Factors affecting the resting pH of in vitro human microcosm dental plaque and Streptococcus mutans biofilms. Arch Oral Biol. 43:93–102. doi: 10.1016/S0003-9969(97)00113-110.1016/S0003-9969(97)00113-1
  • Smullen J, Finney M, Storey DM, Foster HA. 2012. Prevention of artificial dental plaque formation in vitro by plant extracts. J Appl Microbiol. 113:964–973. doi: 10.1111/jam.2012.113.issue-410.1111/jam.2012.113.issue-4
  • Sorvari R, Spets-Happonen S, Luoma H. 1994. Efficacy of chlorhexidine solution with fluoride varnishing in preventing enamel softening by Streptococcus mutans in an artificial mouth. Scand J Dent Res. 102:206–209.
  • Takahashi N. 2015. Oral microbiome metabolism:from “Who are they?” to “What are they doing?”. J Dent Res. 94:1628–1637. doi: 10.1177/002203451560604510.1177/0022034515606045
  • Tang G, Yip HK, Cutress TW, Samaranayake LP. 2003. Artificial mouth model systems and their contribution to caries research: a review. J Dent. 31:161–171. doi: 10.1016/S0300-5712(03)00009-510.1016/S0300-5712(03)00009-5
  • Thneibat A, Fontana M, Cochran MA, Gonzalez-Cabezas C, Moore BK, Matis BA, Lund MR. 2008. Anticariogenic and antibacterial properties of a copper varnish using an in vitro Microbial Caries Model. Oper Dent. 33:142–148. doi: 10.2341/07-5010.2341/07-50
  • Thurnheer T, van der Ploeg JR, Giertsen E, Guggenheim B. 2006. Effects of Streptococcus mutans gtfC deficiency on mixed oral biofilms in vitro. Caries Res. 40:163–171. doi: 10.1159/00009106510.1159/000091065
  • Totiam P, González-Cabezas C, Fontana MR, Zero DT. 2007. A new in vitro model to study the relationship of gap size and secondary caries. Caries Res. 41:467–473. doi: 10.1159/00010793410.1159/000107934
  • Vanni R, Waldner-Tomic NM, Belibasakis GN, Attin T, Schmidlin PR, Thurnheer T. 2015. Antibacterial efficacy of a propolis toothpaste and mouthrinse against a supragingival multispecies biofilm. Oral Health Prev Dent. 13:531–535.
  • Wong L, Sissions CH. 2001. A comparison of human dental plaque microcosm biofilms grown in an undefined medium and a chemically defined artificial saliva. Arch Oral Biol. 46:477–486. doi: 10.1016/S0003-9969(01)00016-410.1016/S0003-9969(01)00016-4
  • Wong L, Sissons CH, Cutress TW. 1994. Control of a multiple dental plaque culture system and long-term, continuous, plaque pH measurement using labview(r). Binary. 6:173–180.
  • Xie Q, Li J, Zhou X. 2008. Anticaries effect of compounds extracted from Galla chinensis in a multispecies biofilm model. Oral Microbiol Immunol. 23:459–465. doi: 10.1111/omi.2008.23.issue-610.1111/omi.2008.23.issue-6
  • Yip HK, Guo J, Wong WH. 2007. Protection offered by root-surface restorative materials against biofilm challenge. J Dent Res. 86:431–435. doi: 10.1177/15440591070860050810.1177/154405910708600508
  • Zampatti O, Roques C, Michel G. 1994. An in vitro mouth model to test antiplaque agents: preliminary studies using a toothpaste containing chlorhexidine. Caries Res. 28:35–42. doi: 10.1159/00026161810.1159/000261618
  • Zanin IC, Goncalves RB, Junior AB, Hope CK, Pratten J. 2005. Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother. 56:324–330. doi: 10.1093/jac/dki23210.1093/jac/dki232
  • Zaura E, Buijs MJ, Hoogenkamp MA, Ciric L, Papetti A, Signoretto C, Stauder M, Lingstrom P, Pratten J, Spratt DA, et al. 2011. The effects of fractions from shiitake mushroom on composition and cariogenicity of dental plaque microcosms in an in vitro caries model. J Biomed Biotechnol. 2011:135034.
  • Zaura E, Buijs MJ, ten Cate JM. 2002. The effects of the solubility of artificial fissures on plaque pH. J Dent Res. 81:567–571. doi: 10.1177/15440591020810081310.1177/154405910208100813
  • Zero DT, Fontana M, Martínez-Mier EA, Ferreira-Zandoná A, Ando M, González-Cabezas C, Bayne S. 2009. The biology, prevention, diagnosis and treatment of dental caries: scientific advances in the United States. J Am Dent Assoc. 140(Suppl 1):25s–34s. doi: 10.14219/jada.archive.2009.035510.14219/jada.archive.2009.0355

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.