Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 34, 2018 - Issue 5
396
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Probing the settlement signals of Amphibalanus amphitrite

, , , , &
Pages 492-506 | Received 23 Feb 2018, Accepted 11 Apr 2018, Published online: 24 May 2018

References

  • Al-Anzi B, Tracey WD, Benzer S. 2006. Response of Drosophila to wasabi is mediated by painless, the fly homolog of mammalian TRPA1/ANKTM1. Curr Biol. 16:1034–1040. doi: 10.1016/j.cub.2006.04.002.10.1016/j.cub.2006.04.002
  • Aldred N, Alsaab A, Clare AS. 2018. Quantitative analysis of the complete larval settlement process confirms Crisp’s model of surface selectivity by barnacles. Pro R Soc B Biol Sci. 285(1872).
  • Aldred N, Clare AS. 2008. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings. Biofouling. 24:351–363.doi: 10.1080/08927010802256117.10.1080/08927010802256117
  • Aldred N, Høeg JT, Maruzzo D, Clare AS. 2013. Analysis of the behaviours mediating barnacle cyprid reversible adhesion. PLoS ONE. 8:e68085. doi: 10.1371/journal.pone.0068085.10.1371/journal.pone.0068085
  • Almeida JR, Vasconcelos V. 2015. Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion. Biotechnol Adv. 33:343–357. doi: 10.1016/j.biotechadv.2015.01.013.10.1016/j.biotechadv.2015.01.013
  • Al-Yahya H, Chen H-N, Chan BKK, Kado R, Høeg JT. 2016. Morphology of cyprid attachment organs compared across disparate barnacle taxa: does it relate to habitat? Biol Bull. 231:120–129. doi: 10.1086/690092.10.1086/690092
  • Bernard FJ, Lane CE. 1962. Early settlement and metamorphosis of the barnacle Balanus amphitrite niveus. J Morphol. 110:19–39. doi: 10.1002/(ISSN)1097-4687.10.1002/(ISSN)1097-4687
  • Bielecki J, Chan BKK, Hoeg JT, Sari A. 2009. Antennular sensory organs in cyprids of balanomorphan cirripedes: standardizing terminology using Megabalanus rosa. Biofouling. 25:203–214. doi: 10.1080/08927010802688087.10.1080/08927010802688087
  • Bourget E, Crisp DJ. 1975. An analysis of the growth bands and ridges of barnacle shell plates. J Mar Biol Assoc UK. 55:439–461. doi: 10.1017/S0025315400016052.10.1017/S0025315400016052
  • Chan BKK, Sari A, Høeg JT. 2017. Cirripede cypris antennules: how much structural variation exists among balanomorphan species from hard-bottom habitats? Biol Bull. 233:135–143. doi: 10.1086/695689.10.1086/695689
  • Clare AS, Freet RK, McClary M. 1994. On the antennular secretion of the cyprid of Balanus amphitrite amphitrite, and its role as a settlement pheromone. J Mar Biol Assoc UK. 74:243–250. doi: 10.1017/S0025315400035803.10.1017/S0025315400035803
  • Clare AS, Høeg JT. 2008. Balanus amphitrite or Amphibalanus amphitrite? A note on barnacle nomenclature. Biofouling. 24:55–57. doi: 10.1080/08927010701830194.10.1080/08927010701830194
  • Clare AS, Rittschof D, Costlow JD. 1992. Effects of the nonsteroidal ecdysone mimic RH 5849 on larval crustaceans. J Exp Zool. 262:436–440. doi: 10.1002/(ISSN)1097-010X.10.1002/(ISSN)1097-010X
  • Clare AS, Thomas R, Rittschof D. 1995. Evidence for the involvement of cyclic AMP in the pheromonal modulation of barnacle settlement. J Exp Biol. 198:655–664.
  • Costlow JD. 1956. Shell development in Balanus improvisus Darwin. J Morphol. 99:359–415. doi: 10.1002/(ISSN)1097-4687.10.1002/(ISSN)1097-4687
  • Costlow JD, Bookhout CG. 1958. Larval development of Balanus amphitrite var. denticulata Broch reared in the laboratory. Biol Bull. 114:284–295. doi: 10.2307/1538985.10.2307/1538985
  • Dedos SG, Fugo H. 2001. Acceleration of pupal-adult development by fenoxycarb in the silkworm, Bombyx mori. Zool Sci. 18:771–777.
  • Dedos SG, Szurdoki F, Székács A, Mizoguchi A, Fugo H. 2002. Induction of dauer pupae by fenoxycarb in the silkworm, Bombyx mori. J Insect Physiol. 48:857–865. doi: 10.1016/S0022-1910(02)00155-5.10.1016/S0022-1910(02)00155-5
  • Erdahl WL, Chapman CJ, Taylor RW, Pfeiffer DR. 1994. Ca2+ transport properties of ionophores A23187, ionomycin, and 4-Br A23187 in a well defined model system. Biophys J. 66:1678–1693. doi: 10.1016/S0006-3495(94)80959-2.10.1016/S0006-3495(94)80959-2
  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, et al. 1998. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem. 273:18623–18632. doi: 10.1074/jbc.273.29.18623.10.1074/jbc.273.29.18623
  • Fieller EC. 1940. The biological standardization of insulin. J R Statist Soc. 7:1–64.
  • Fischer ER, Hansen BT, Nair V, Hoyt FH, Dorward DW. 2012. Scanning electron microscopy. Curr Proto Microbiol. Chapter 2:Unit 2B.2.
  • Freeman JA, Costlow JD. 1983. The cyrpid molt cycle and its hormonal control in the barnacle, Balanus amphitrite. J Crustacean Biol. 3:173–182. doi: 10.2307/1548253.10.2307/1548253
  • Glenner H, Brodin B. 2009. Phorbol ester-induced metamorphosis in the parasitic barnacle, Loxothylacus panopaei. J Mar Biol Assoc UK. 77:261–264.
  • Glenner H, Høeg JT, Grygier MJ, Fujita Y. 2008. Induced metamorphosis in crustacean y-larvae: towards a solution to a 100-year-old riddle. BMC Biol. 6:21. doi: 10.1186/1741-7007-6-21.10.1186/1741-7007-6-21
  • Gohad NV, Aldred N, Orihuela B, Clare AS, Rittschof D, Mount AS. 2012. Observations on the settlement and cementation of barnacle (Balanus amphitrite) cyprid larvae after artificial exposure to noradrenaline and the locations of adrenergic-like receptors. J Exp Mar Biolo Ecol. 416-417:153–161. doi: 10.1016/j.jembe.2012.02.013.10.1016/j.jembe.2012.02.013
  • Harder T, Thiyagarajan V, Qian PY. 2001. Combined effect of cyprid age and lipid content on larval attachment and metamorphosis of Balanus amphitrite darwin. Biofouling. 17:257–262. doi: 10.1080/08927010109378486.10.1080/08927010109378486
  • Hartenstein V, Chipman AD. 2015. Hexapoda: a drosophila’s view of development. In: Wanninger A, editor. Evolutionary developmental biology of invertebrates 5: Ecdysozoa III: Hexapoda. Vienna: Springer Vienna; p. 1–91.
  • Hellio C, Simon-Colin C, Clare A, Deslandes E. 2004. Isethionic acid and floridoside isolated from the red alga, Grateloupia turuturu, inhibit settlement of Balanus amphitrite cyprid larvae. Biofouling. 20:139–145. doi: 10.1080/08927010412331279605.10.1080/08927010412331279605
  • Hellio C, Tsoukatou M, Marechal J-P, Aldred N, Beaupoil C, Clare AS, Vagias C, Roussis V. 2005. Inhibitory effects of Mediterranean sponge extracts and metabolites on larval settlement of the barnacle Balanus amphitrite. Mar Biotechnol. 7:297–305. doi: 10.1007/s10126-004-3150-x.10.1007/s10126-004-3150-x
  • Høeg JT, Deutsch J, Chan BKK, Semmler Le H. 2015. “Crustacea”: Cirripedia. In: Wanninger A, editor. Evolutionary developmental biology of invertebrates 4: Ecdysozoa II: Crustacea. Vienna: Springer Vienna; p. 153–181.
  • Høeg JT, Møller OS. 2006. When similar beginnings lead to different ends: Constraints and diversity in cirripede larval development. Invertebr Repr Dev. 49:125–142. doi: 10.1080/07924259.2006.9652204.10.1080/07924259.2006.9652204
  • Holm ER. 2012. Barnacles and biofouling. Integr Comp Biol. 52:348–355. doi: 10.1093/icb/ics042.10.1093/icb/ics042
  • Im SH, Galko MJ. 2012. Pokes, sunburn, and hot sauce: Drosophila as an emerging model for the biology of nociception. Dev Dyn. 241:16–26. doi: 10.1002/dvdy.22737.10.1002/dvdy.22737
  • Johnson JA, Adak S, Mochly-Rosen D. 1995. Prolonged phorbol ester treatment down-regulates protein kinase C isozymes and increases contraction rate in neonatal cardiac myocytes. Life Sciences. 57:1027–1038. doi: 10.1016/0024-3205(95)02048-N.10.1016/0024-3205(95)02048-N
  • Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC, Theobald DL, Garrity PA. 2010. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature. 464:597–600. doi: 10.1038/nature08848.10.1038/nature08848
  • Kase H, Iwahashi K, Nakanishi S, Matsuda Y, Yamada K, Takahashi M, Murakata C, Sato A, Kaneko M. 1987. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun. 142:436–440. doi: 10.1016/0006-291X(87)90293-2.10.1016/0006-291X(87)90293-2
  • Lagersson N, Høeg J. 2002. Settlement behavior and antennulary biomechanics in cypris larvae of Balanus amphitrite (Crustacea: Thecostraca: Cirripedia). Mar Biol. 141:513–526.
  • Lau SCK, Qian PÄ. 2000. Inhibitory effect of phenolic compounds and marine bacteria on larval settlement of the barnacle Balanus amphitrite amphitrite darwin. Biofouling. 16:47–58. doi: 10.1080/08927010009378429.10.1080/08927010009378429
  • Lucas MI, Walker G, Holland DL, Crisp DJ. 1979. An energy budget for the free-swimming and metamorphosing larvae of Balanus balanoides (Crustacea: Cirripedia). Mar Biol. 55:221–229. doi: 10.1007/BF00396822.10.1007/BF00396822
  • Maruzzo D, Aldred N, Clare AS, Høeg JT. 2012. Metamorphosis in the cirripede crustacean Balanus amphitrite. PLoS ONE. 7:e37408. doi: 10.1371/journal.pone.0037408.10.1371/journal.pone.0037408
  • Maruzzo D, Conlan S, Aldred N, Clare AS, Høeg JT. 2011. Video observation of surface exploration in cyprids of Balanus amphitrite: the movements of antennular sensory setae. Biofouling. 27:225–239. doi: 10.1080/08927014.2011.555534.10.1080/08927014.2011.555534
  • Matsumura K, Mori S, Nagano M, Fusetani N. 1998. Lentil lectin inhibits adult extract-induced settlement of the barnacle, Balanus amphitrite. J Exp Zool. 280:213–219. doi: 10.1002/(ISSN)1097-010X.10.1002/(ISSN)1097-010X
  • Miyakawa H, Toyota K, Hirakawa I, Ogino Y, Miyagawa S, Oda S, Tatarazako N, Miura T, Colbourne JK, Iguchi T. 2013. A mutation in the receptor Methoprene-tolerant alters juvenile hormone response in insects and crustaceans. Nat Commun. 4:1856.
  • mMotulsky H. 2014. Intuitive biostatistics : a nonmathematical guide to statistical thinking. 3rd ed. New York (NY): Oxford University Press.
  • Pagett HE, Abrahams JL, Bones J, O'Donoghue NO, Marles-Wright J, Lewis RJ, Harris JR, Caldwell GS, Rudd PM, Clare AS. 2012. Structural characterisation of the N-glycan moiety of the barnacle settlement-inducing protein complex (SIPC). J Exp Biol. 215:1192–1198. doi: 10.1242/jeb.063503.10.1242/jeb.063503
  • Peng B, Wang J, Peng Z, Zhou S, Wang F, Ji Y, Ye Z, Zhou X, Lin T, Zhang X. 2012. Studies on the synthesis, pungency and anti-biofouling performance of capsaicin analogues. Sci China Chem. 55:435–442. doi: 10.1007/s11426-011-4307-x.10.1007/s11426-011-4307-x
  • Phang IY, Chaw KC, Choo SSH, Kang RKC, Lee SSC, Birch WR, Teo SLM, Vancso GJ. 2009. Marine biofouling field tests, settlement assay and footprint micromorphology of cyprid larvae of Balanus amphitrite on model surfaces. Biofouling. 25:139–147. doi: 10.1080/08927010802592925.10.1080/08927010802592925
  • Qian P-Y, Chen L, Xu Y. 2013. Mini-review: Molecular mechanisms of antifouling compounds. Biofouling. 29:381–400. doi: 10.1080/08927014.2013.776546.10.1080/08927014.2013.776546
  • Qian P-Y, Li Z, Xu Y, Li Y, Fusetani N. 2015. Mini-review: Marine natural products and their synthetic analogs as antifouling compounds: 2009–2014. Biofouling. 31:101–122. doi: 10.1080/08927014.2014.997226.10.1080/08927014.2014.997226
  • Rittschof D, Clare AS, Gerhart DJ, Mary SA, Bonaventura J. 1992. Barnacle in vitro assays for biologically active substances: toxicity and settlement inhibition assays using mass cultured Balanus amphitrite amphitrite darwin. Biofouling. 6:115–122. doi: 10.1080/08927019209386217.10.1080/08927019209386217
  • Rittschof D, Lai C-H, Kok L-M, Teo SL-M. 2003. Pharmaceuticals as antifoulants: concept and principles. Biofouling. 19(sup1):207–212. doi: 10.1080/0892701021000083769.10.1080/0892701021000083769
  • Smith PA, Clare AS, Rees HH, Prescott MC, Wainwright G, Thorndyke MC. 2000. Identification of methyl farnesoate in the cypris larva of the barnacle, Balanus amphitrite, and its role as a juvenile hormone. Insect Biochem Mol Biol. 30:885–890. doi: 10.1016/S0965-1748(00)00062-X.10.1016/S0965-1748(00)00062-X
  • Syeda R, Xu J, Dubin AE, Coste B, Mathur J, Huynh T, Matzen J, Lao J, Tully DC, Engels IH, et al. 2015. Chemical activation of the mechanotransduction channel Piezo1. eLife. 4:e07369.
  • Thiyagarajan V, Harder T, Qian P-Y. 2002. Effect of the physiological condition of cyprids and laboratory-mimicked seasonal conditions on the metamorphic successes of Balanus amphitrite Darwin (Cirripedia; Thoracica). J Exp Mar Biol Ecol. 274:65–74. doi: 10.1016/S0022-0981(02)00182-X.10.1016/S0022-0981(02)00182-X
  • Toyota K, Sato T, Tatarazako N, Iguchi T. 2017. Protein kinase C is involved with upstream signaling of methyl farnesoate for photoperiod-dependent sex determination in the water flea Daphnia pulex. Biol Open. 6:161–164. doi: 10.1242/bio.021857.10.1242/bio.021857
  • Treiman M, Caspersen C, Christensen SB. 1998. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases. Trends Pharmacol Sci. 19:131–135. doi: 10.1016/S0165-6147(98)01184-5.10.1016/S0165-6147(98)01184-5
  • West TL, Costlow JD. 1988. Determinants of the larval molting pattern of the crustacean Balanus eburneus Gould (Cirripedia: Thoracica). J Exp Zool. 248:33–44. doi: 10.1002/(ISSN)1097-010X.10.1002/(ISSN)1097-010X
  • Wu-zhang AX, Newton AC. 2013. Protein kinase C pharmacology: refining the toolbox. Biochem J. 452:195–209. doi: 10.1042/BJ20130220.10.1042/BJ20130220
  • Xu Q, Barrios CA, Cutright T, Zhang Newby B-m. 2005. Evaluation of toxicity of capsaicin and zosteric acid and their potential application as antifoulants. Environ Toxicol. 20:467–474. doi: 10.1002/(ISSN)1522-7278.10.1002/(ISSN)1522-7278
  • Yamamoto H, Kawaii S, Yoshimura E, Tachibana A, Fusetani N. 1997. 20-Hydroxyecdysone regulates larval metamorphosis of the barnacle, Balanus amphitrite. Zool Sci. 14:887–892. doi: 10.2108/zsj.14.887.10.2108/zsj.14.887
  • Yamamoto H, Okino T, Yoshimura E, Tachibana A, Shimizu K, Fusetani N. 1997. Methyl farnesoate induces larval metamorphosis of the barnacle, Balanus amphitrite via protein kinase C activation. J Exp Zool. 278:349–355. doi: 10.1002/(ISSN)1097-010X.10.1002/(ISSN)1097-010X
  • Yamamoto H, Tachibana A, Matsumura K, Fusetani N. 1995. Protein kinase C (PKC) signal transduction system involved in larval metamorphosis of the barnacle, Balanus amphitrite. Zool Sci. 12:391–396. doi: 10.2108/zsj.12.391.10.2108/zsj.12.391

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.