Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 34, 2018 - Issue 5
264
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Exploring the regulatory role of nitric oxide (NO) and the NO-p38MAPK/cGMP pathway in larval settlement of the bryozoan Bugula neritina

, , , &
Pages 545-556 | Received 20 Dec 2017, Accepted 19 Apr 2018, Published online: 29 May 2018

References

  • Alfaro AC, Young T, Ganesan AM. 2011. Regulatory effects of mussel (Aulacomya maoriana Iredale 1915) larval settlement by neuroactive compounds, amino acids and bacterial biofilms. Aquaculture. 322-323:158–168. doi: 10.1016/j.aquaculture.2011.08.038.10.1016/j.aquaculture.2011.08.038
  • Bhat NR, Zhang P, Lee JC, Hogan EL. 1998. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxin-stimulated primary glial cultures. J Neurosci. 18:1633–1641. doi: 10.1523/JNEUROSCI.18-05-01633.1998.10.1523/JNEUROSCI.18-05-01633.1998
  • Biggers WJ, Pires A, Pechenik JA, Johns E, Patel P, Polson T, Polson J. 2012. Inhibitors of nitric oxide synthase induce larval settlement and metamorphosis of the polychaete annelid Capitella teleta. Invertebr Reprod Dev. 56:1–13. doi: 10.1080/07924259.2011.588006.10.1080/07924259.2011.588006
  • Bishop CD, Brandhorst BP. 2001. NO/cGMP signaling and HSP90 activity represses metamorphosis in the sea urchin Lytechinus pictus. Biol Bull. 201:394–404. doi: 10.2307/1543617.10.2307/1543617
  • Bishop CD, Brandhorst BP. 2003. On nitric oxide signaling, metamorphosis, and the evolution of biphasic life cycles. Evol Dev. 5:542–550. doi: 10.1046/j.1525-142X.2003.03059.x.10.1046/j.1525-142X.2003.03059.x
  • Bishop CD, Bates WR, Brandhorst BP. 2001. Regulation of metamorphosis in ascidians involves NO/cGMP signaling and HSP90. J Exp Zool(6). 289:374–384. doi: 10.1002/(ISSN)1097-010X.10.1002/(ISSN)1097-010X
  • Bishop CD, Pires A, Norby SW, Boudko D, Moroz LL, Hadfield MG. 2008. Analysis of nitric oxide-cyclic guanosine monophosphate signaling during metamorphosis of the nudibranch Phestilla sibogae Bergh (Gastropoda: Opisthobranchia). Evol Dev. 10:288–299. doi: 10.1111/j.1525-142X.2008.00238.x.10.1111/j.1525-142X.2008.00238.x
  • Bloodgood RA. 2010. Sensory reception is an attribute of both primary cilia and motile cilia. J Cell Sci. 123:505–509. doi: 10.1242/jcs.066308.10.1242/jcs.066308
  • Bruckdorfer R. 2005. The basics about nitric oxide. Mol Aspects Med. 26:3–31. doi: 10.1016/j.mam.2004.09.002.10.1016/j.mam.2004.09.002
  • Brunner F, Stessel H, Kukovetz WR. 1995. Novel guanylyl cyclase inhibitor, ODQ reveals role of nitric oxide, but not of cyclic GMP in endothelin-1 secretion. FEBS Lett. 376:262–266. doi: 10.1016/0014-5793(95)01297-X.10.1016/0014-5793(95)01297-X
  • Bryan PJ, Qian PY. 1998. Induction of larval attachment and metamorphosis in the abalone Haliotis diversicolor (Reeve). J Exp Mar Biol Ecol. 223:39–51. doi: 10.1016/S0022-0981(97)00156-1.10.1016/S0022-0981(97)00156-1
  • Carpizo-Ituarte E, Hadfield MG. 1998. Stimulation of metamorphosis in the Polychaete Hydroides elegans Haswell (Serpulidae). Biol Bull. 194:14–24. doi: 10.2307/1542509.10.2307/1542509
  • Comes S, Locascio A, Silvestre F, d’Ischia M, Russo GL, Tosti E, Branno M, Palumbo A. 2007. Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis. Developmental Biology. 306:772–784. doi: 10.1016/j.ydbio.2007.04.016.10.1016/j.ydbio.2007.04.016
  • Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA. 2009. p38 MAPK: stress responses from molecular mechanisms to therapeutics. Trends Mol Med. 15:369–379. doi: 10.1016/j.molmed.2009.06.005.10.1016/j.molmed.2009.06.005
  • Couper JM, Leise EM. 1996. Serotonin injections induce metamorphosis in larvae of the gastropod mollusc Ilyanassa obsoleta. Biol Bull. 191:178–186. doi: 10.2307/1542921.10.2307/1542921
  • Dobretsov SV, Qian PY. 2003. Pharmacological induction of larval settlement and metamorphosis in the blue mussel Mytilus edulis L. Biofouling. 19:57–63. doi: 10.1080/0892701021000060860.10.1080/0892701021000060860
  • Elphick MR, Kemenes G, Staras K, O’Shea M. 1995. Behavioral role for nitric oxide in chemosensory activation of feeding in a mollusc. J Neurosci. 15:7653–7664. doi: 10.1523/JNEUROSCI.15-11-07653.1995.10.1523/JNEUROSCI.15-11-07653.1995
  • Fedele E, Jin Y, Varnier G, Raiteri M. 1996. In vivo microdialysis study of a specific inhibitor of soluble guanylyl cyclase on the glutamate receptor/nitric oxide/cyclic GMP pathway. Br J Pharmacol. 119:590–594. doi: 10.1111/bph.1996.119.issue-3.10.1111/bph.1996.119.issue-3
  • Froggett SJ, Leise EM. 1999. Metamorphosis in the marine snail Ilyanassa obsoleta, Yes or NO? Biol Bull. 196:57–62. doi: 10.2307/1543167.10.2307/1543167
  • Fusetani N. 2004. Biofouling and antifouling. Nat Prod Rep. 21:94–104. doi: 10.1039/b302231p.10.1039/b302231p
  • Grossi L, D’Angelo S. 2005. Sodium Nitroprusside: Mechanism of NO release mediated by sulfhydryl-containing molecules. J Med Chem. 48:2622–2626. doi: 10.1021/jm049857n.10.1021/jm049857n
  • Haase A, Bicker G. 2003. Nitric oxide and cyclic nucleotides are regulators of neuronal migration in an insect embryo. Development. 130:3977–3987. doi: 10.1242/dev.00612.10.1242/dev.00612
  • He LS, Xu Y, Matsumura K, Zhang Y, Zhang G, Qi SHI, Qian PY. 2012. Evidence for the involvement of p38 MAPK activation in barnacle larval settlement. PLoS ONE. 7:e47195. doi: 10.1371/journal.pone.0047195.10.1371/journal.pone.0047195
  • Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. 2000. Reactive oxygen species, cell signaling, and cell injury. Free Radical Biol Med. 28:1456–1462. doi: 10.1016/S0891-5849(00)00252-5.10.1016/S0891-5849(00)00252-5
  • Huang G, Shi LZ, Chi H. 2009. Regulation of JNK and p38 MAPK in the immune system: signal integration, propagation and termination. Cytokine. 48:161–169.doi: 10.1016/j.cyto.2009.08.002.10.1016/j.cyto.2009.08.002
  • Johnson JL, Leroux MR. 2010. cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia. Trends Cell Biol. 20:435–444. doi: 10.1016/j.tcb.2010.05.005.10.1016/j.tcb.2010.05.005
  • Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T. 1998. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem. 70:2446–2453. doi: 10.1021/ac9801723.10.1021/ac9801723
  • Kronstrom J, Dupont S, Mallefet J, Thorndyke M, Holmgren S. 2007. Serotonin and nitric oxide interaction in the control of bioluminescence in northern krill, Meganyctiphanes norvegica (M. Sars). J Exp Biol. 210:3179–3187. doi: 10.1242/jeb.002394.10.1242/jeb.002394
  • Leise EM, Kempf SC, Durham NR, Gifondorwa DJ. 2004. Induction of metamorphosis in the marine gastropod Ilyanassa obsoleta : 5HT, NO and programmed cell death. Acta Biol Hung. 55:293–300. doi: 10.1556/ABiol.55.2004.1-4.35.10.1556/ABiol.55.2004.1-4.35
  • Letunic I, Doerks T, Bork P. 2014. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43:D257–D260.
  • Li H, Wei Lin W, Zhang G, Cai Z, Cai G, Chang Y, Xing K. 2006. Enhancement of larval settlement and metamorphosis through biological and chemical cues in the abalone Haliotis diversicolor supertexta. Aquaculture. 258:416–423. doi: 10.1016/j.aquaculture.2006.04.013.10.1016/j.aquaculture.2006.04.013
  • Lucas KA, Pitari GM, Kazerouni S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA. 2000. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 52:375–414.
  • Marshall DJ, Pechenik JA, Keough MJ. 2003. Larval activity levels and delayed metamorphosis affect post-larval performance in the colonial ascidian Diplosoma listerianum. Mar Ecol Prog Ser. 246:153–162. doi: 10.3354/meps246153.10.3354/meps246153
  • Moncada S, Palmer RM, Higgs EA. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 43:109–142.
  • Palumbo A. 2005. Nitric oxide in marine invertebrates: a comparative perspective. Comp Biochem Physiol A: Mol Integr Physiol. 142:241–248. doi: 10.1016/j.cbpb.2005.05.043.10.1016/j.cbpb.2005.05.043
  • Pearce CM, Scheibling RE. 1994. Induction of metamorphosis of larval echinoids (Strongylocentrotus droebachiensis and Echinarachnius parma) by potassium chloride (KCI). Invertebr Reprod Dev. 26:213–220. doi: 10.1080/07924259.1994.9672420.10.1080/07924259.1994.9672420
  • Pechenik JA, Heyman WD. 1987. Using KCl to determine size at competence for larvae of the marine gastropod Crepidula fornicata (L.). J Exp Mar Biol Ecol. 112:27–38. doi: 10.1016/S0022-0981(87)80012-6.10.1016/S0022-0981(87)80012-6
  • Pechenik JA, Qian PY. 1998. Onset and maintenance of metamorphic competence in the marine polychaete Hydroides elegans Haswell in response to three chemical cues. J Exp Mar Biol Ecol. 226:51–74. doi: 10.1016/S0022-0981(97)00237-2.10.1016/S0022-0981(97)00237-2
  • Pechenik JA, Cochrane DE, Li W, West ET, Pires A, Leppo M. 2007. Nitric oxide inhibits metamorphosis in larvae of Crepidula fornicata, the Slippershell Snail. Biol Bull. 213:160–171. doi: 10.2307/25066632.10.2307/25066632
  • Pfeiffer S, Leopold E, Hemmens B, Schmidt K, Werner ER, Mayer B. 1997. Interference of carboxy-PTIO with nitric oxide- and peroxynitrite-mediated reactions. Free Radic Biol Med. 22:787–794. doi: 10.1016/S0891-5849(96)00407-8.10.1016/S0891-5849(96)00407-8
  • Pires A, Woollacott RM. 1997. Serotonin and dopamine have opposite effects on phototaxis in larvae of the bryozoan Bugula neritina. Biol Bull. 192:399–409. doi: 10.2307/1542749.10.2307/1542749
  • Qian PY. 1999. Larval settlement of polychaetes. Hydrobiologia. 402:239–253. doi: 10.1023/A:1003704928668.10.1023/A:1003704928668
  • Reed CG, Woollacott RM. 1982. Mechanisms of rapid morphogenetic movements in the metamorphosis of the bryozoan Bugula neritina (Cheilostomata, Cellularioidea) I Attachment to the substratum. J Morphol. 172:335–348. doi: 10.1002/(ISSN)1097-4687.10.1002/(ISSN)1097-4687
  • Reed CG, Woollacott RM. 1983. Mechanisms of rapid morphogenetic movements in the metamorphosis of the bryozoan Bugula neritina (Cheilostomata, Cellularioidea) II The role of dynamic assemblages of microfilaments in the pallial epithelium. J Morphol. 177:127–143. doi: 10.1002/(ISSN)1097-4687.10.1002/(ISSN)1097-4687
  • Reed CG, Ninos JM, Woollacott RM. 1988. Bryozoan larvae as mosaics of multifunctional ciliary fields: ultrastructure of the sensory organs of Bugula solonifera (Cheilostomata: Cellularioidea). J Morphol. 197:127–145. doi: 10.1002/(ISSN)1097-4687.10.1002/(ISSN)1097-4687
  • Rodriguez SRRS, Ojeda FP, Inestrosa NG. 1993. Settlement of benthic marine invertebrates. Mar Ecol Prog Ser. 97:193–207. doi: 10.3354/meps097193.10.3354/meps097193
  • Romero MR, Phuong MA, Bishop C, Krug PJ. 2013. Nitric oxide signaling differentially affects habitat choice by two larval morphs of the sea slug Alderia willowi: mechanistic insight into evolutionary transitions in dispersal strategies. J Exp Biol. 216:1114–1125. doi: 10.1242/jeb.080747.10.1242/jeb.080747
  • Santagata S. 2008a. The morphology and evolutionary significance of the ciliary fields and musculature among marine bryozoan larvae. J Morphol. 269:349–364. doi: 10.1002/(ISSN)1097-4687.10.1002/(ISSN)1097-4687
  • Santagata S. 2008b. Evolutionary and structural diversification of the larval nervous system among marine bryozoans. Biol Bull. 215:3–23.
  • Shimizu K, Hunter E, Fusetani N. 2000. Localisation of biogenic amines in larvae of Bugula neritina (Bryozoa: Cheilostomatida) and their effects on settlement. Mar Biol. 136:1–9. doi: 10.1007/s002270050001.10.1007/s002270050001
  • Ueda N, Degnan SM. 2013. Nitric oxide acts as a positive regulator to induce metamorphosis of the ascidian Herdmania momus. PLoS ONE. 8:e72797. doi: 10.1371/journal.pone.0072797.10.1371/journal.pone.0072797
  • Ueda N, Degnan SM. 2014. Nitric oxide is not a negative regulator of metamorphic induction in the abalone Haliotis asinine. Front Mar Sci. 1:1–13.
  • Ueda N, Richards GS, Degnan BM, Kranz A, Adamska M, Croll RP, Degnan SM. 2016. An ancient role for nitric oxide in regulating the animal pelagobenthic life cycle: evidence from a marine sponge. Sci Rep. 6:437. doi: 10.1038/srep37546.10.1038/srep37546
  • Wang H, Qian PY. 2010. Involvement of a novel p38 mitogen-activated protein kinase in larval metamorphosis of the polychaete Hydroides elegans (Haswell). J Exp Zool B. 314B:390–402. doi: 10.1002/jez.b.v314b:5.10.1002/jez.b.v314b:5
  • Wang H, Zhang H, Wong YH, Voolstra C, Ravasi T, Bajic VladimirB, Qian Pei-YuanV, Qian PY. 2010. Rapid transcriptome and proteome profiling of a non-model marine invertebrate, Bugula neritina. Proteomics. 10:2972–2981. doi: 10.1002/pmic.201000056.10.1002/pmic.201000056
  • Wang KL, Zhang G, Sun J, Xu Y, Han Z, Liu LL, Shao CL, Liu QA, Wang CY, Qian PY. 2016. Cochliomycin A inhibits the larval settlement of Amphibalanus amphitrite by activating the NO/cGMP pathway. Biofouling. 32:35–44. doi: 10.1080/08927014.2015.1121245.10.1080/08927014.2015.1121245
  • Wendt DE. 1996. Effect of larval swimming duration on success of metamorphosis and size of the ancestrular lophophore in Bugula neritina (Bryozoa). Biol Bull. 191:224–233. doi: 10.2307/1542925.10.2307/1542925
  • Wendt DE, Woollacott RM. 1995. Induction of larval settlement by KCl in three species of Bugula (Bryozoa). Invertebr Biol. 114:345–351. doi: 10.2307/3226843.10.2307/3226843
  • Wong YH, Ryu T, Seridi L, Ghosheh Y, Bougouffa S, Qian PY, Ravasi T. 2014. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development. Sci Rep. 4:6534.
  • Wong YH, Wang H, Ravasi T, Qian PY. 2012. Involvement of Wnt signaling pathways in the metamorphosis of the bryozoan Bugula neritina. Plos One. 7:e33323.
  • Wood J, Garthwaite J. 1994. Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signaling and its pharmacological properties. Neuropharmacology. 33:1235–1244. doi: 10.1016/0028-3908(94)90022-1.10.1016/0028-3908(94)90022-1
  • Woollacott RM, Zimmer RL. 1971. Attachment and metamorphosis of the cheilo-ctenostome bryozoan Bugula neritina (Linne). J Morphol(3). 134:351–382. doi: 10.1002/jmor.v134:3.10.1002/jmor.v134:3
  • Yamamoto H, Satuito CG, Yamazaki M, Natoyama K, Tachibana A, Fusetani N. 1998. Neurotransmitter blockers as antifoulants against planktonic larvae of the barnacle Balanus amphitrite and the mussel Mytilus galloprovincialis. Biofouling. 13:69–82. doi: 10.1080/08927019809378371.10.1080/08927019809378371
  • Yang JL, Glenn Satuito C, Bao WY, Kitamura H. 2008. Induction of metamorphosis of pediveliger larvae of the mussel Mytilus galloprovincialis Lamarck, 1819 using neuroactive compounds, KCl, NH4Cl and organic solvents. Biofouling. 24:461–470. doi: 10.1080/08927010802340309.10.1080/08927010802340309
  • Yang XX, Zhang Y, Wong YH, Qian, PY. 2018. HSP90 regulates larval settlement of the bryozoan Bugula neritina through NO pathway. J Experimental Biol. jeb-167478.
  • Zhang G, He LS, Wong YH, Qian PY. 2013. MKK3 was involved in larval settlement of the barnacle Amphibalanus amphitrite through activating the kinase activity of p38MAPK. PLoS ONE. 8:e69510. doi: 10.1371/journal.pone.0069510.10.1371/journal.pone.0069510
  • Zhang Y, He LS, Zhang G, Xu Y, Lee OO, Matsumura K, Qian PY. 2012. The regulatory role of the NO/cGMP signal transduction cascade during larval attachment and metamorphosis of the barnacle Balanus (=Amphibalanus) amphitrite. J Exp Biol. 215:3813–3822. doi: 10.1242/jeb.070235.10.1242/jeb.070235
  • Zhang HM, Wong YH, Wang H, Chen ZF, Arellano SM, Ravasi T, Qian PY. 2011. Quantitative proteomics identify molecular targets that are crucial in larval settlement and metamorphosis of Bugula neritina. J Proteome Res. 10:340–360.
  • Zhao B, Zhang S, Qian PY. 2003. Larval settlement of the silver-or goldlip pearl oyster Pinctada maxima (Jameson) in response to natural biofilms and chemical cues. Aquaculture. 220:883–901. doi: 10.1016/S0044-8486(02)00567-7.10.1016/S0044-8486(02)00567-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.