Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 34, 2018 - Issue 6
351
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Effect of long term application of tetrakis(hydroxymethyl)phosphonium sulfate (THPS) in a light oil-producing oilfield

ORCID Icon, , , &
Pages 605-617 | Received 20 Dec 2017, Accepted 09 May 2018, Published online: 27 Aug 2018

References

  • Aiad IA, Tawfik SM, Shaban SM, Abd-Elaal AA, El-Shafie M. 2014. Enhancing of corrosion inhibition and the biocidal effect of phosphonium surfactant compounds for oil field equipment. J Surfact Deterg. 17:391–401. doi:10.1007/s11743-013-1512-y
  • Akpan GU, Abah G, Akpan BD. 2013. Correlation between microbial populations isolated from biofilms of oil pipelines and corrosion rates. Int J Eng Sci. 2:39–45.
  • Ashassi-Sorkhabi H, Moradi-Haghighi M, Zarrini G. 2012. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel. Mater Sci Eng C. 32:303–309. doi:10.1016/j.msec.2011.10.033
  • Beech IB, Gaylarde CC, Smith JJ, Geesey GG. 1991. Extracellular polysaccharides from Desulfovibrio desulfuricans and Pseudomonas fluorescens in the presence of mild and stainless steel. Appl Microbiol Biotechnol. 35:65–71.
  • Bilthoven GJ. 2000. Environmental Health Criteria 218: Flame retardants: tris(2-butoxyethyl) phosphate, tris(2-ethylhexyl) phosphate, and tetrakis(hydroxymethyl) phosphonium salts. Geneva, Switzerland: World Health Organization.
  • Boretska M, Datsenko I, Suslova O, Pareniuk O, Moshynets O. 2014. Amino acid composition of tightly bound exopolymeric substances produced by corrosion-related bacteria in presence of mild steel. Adv Microbiol. 4:808. doi:10.4236/aim.2014.412089
  • Callbeck CM, Agrawal A, Voordouw G. 2013. Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate. Appl Environ Microbiol. 79:5059–5068. doi:10.1128/AEM.01251-13
  • Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scand J Statist. 11:265–270.
  • Cloete TE, Jacobs L, Brözel VS. 1998. The chemical control of biofouling in industrial water systems. Biodegradation. 9:23–37. doi:10.1023/A:1008216209206
  • Dinh HT, Kuever J, Muszmann M, Hassel AW, Stratmann M, Widdel F. 2004. Iron corrosion by novel anaerobic microorganisms. Nature. 427:829–832. doi:10.1038/nature02321
  • Dong X, Kleiner M, Sharp CE, Thorson E, Li C, Liu D, Strous M. 2017. Fast and simple analysis of MiSeq amplicon sequencing data with MetaAmp. Front Microbiol. 8:e0165448. doi:10.3389/fmicb.2017.01461
  • Duncan KE, Gieg LM, Parisi VA, Tanner RS, Tringe SG, Bristow J, Suflita JM. 2009. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ Sci Technol. 43:7977–7984. doi:10.1021/es9013932
  • Enning D, Smith R, Stolle J. 2016. Evaluating the efficacy of weekly THPS and glutaraldehyde batch treatment to control severe microbial corrosion in a simulated seawater injection system. NACE International. Corrosion/2016. Paper No. 7322.
  • Fonseca IT, Feio MJ, Lino AR, Reis MA, Rainha VL. 1998. The influence of the media on the corrosion of mild steel by Desulfovibrio desulfuricans bacteria: an electrochemical study. Electrochim Acta. 43:213–222. doi:10.1016/S0013-4686(97)00227-2
  • Gardner LR, Stewart PS. 2002. Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J Ind Microbiol Biotechnol. 29:354–360. doi:10.1038/sj.jim.7000284
  • Gieg LM, Jack TR, Foght JM. 2011. Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol. 92:263.10. doi:10.1007/s00253-011-3542-6
  • Gray ND, Sherry A, Hubert C, Dolfing J, Head IM. 2010. Methanogenic degradation of petroleum hydrocarbons in subsurface environments: remediation, heavy oil formation, and energy recovery. Adv Appl Microbiol. 72:137–161. doi:10.1016/S0065-2164(10)72005-0
  • Greene EA, Brunelle V, Jenneman GE, Voordouw G. 2006. Synergistic inhibition of microbial sulfide production by combinations of the metabolic inhibitor nitrite and biocides. Appl Environ Microbiol. 72:7897–7901. doi:10.1128/AEM.01526-06
  • Greene AC, Patel BK, Yacob S. 2009. Geoalkalibacter subterraneus sp. nov., an anaerobic Fe (III)-and Mn (IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. Int J Syst Evol Microbiol. 59:781–785. doi:10.1099/ijs.0.001537-0
  • James BR, Lorenzini F. 2010. Developments in the chemistry of tris (hydroxymethyl) phosphine. Coord Chem Rev. 254:420–430. doi:10.1016/j.ccr.2009.07.008
  • Jenneman GE, Greene A, Voordouw G., inventors; University Technologies International Inc, Conoco Phillips Co, assignee. 2010 Nov 16. Inhibition of biogenic sulfide production via biocide and metabolic inhibitor combination. Washington, DC: U.S. Patent and Trademark Office. United States Patent US 7,833,551.
  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T. 2008. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature. 451:176–180. doi:10.1038/nature06484
  • Jones C, Downward B, Edmunds S, Curtis T, Smith F. 2012. THPS: a review of the first 25 years, lessons learned, value created and visions for the future. NACE International. Corrosion/2012. Paper No. 1505.
  • Kahrilas GA, Blotevogel J, Stewart PS, Borch T. 2014. Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity. Environ Sci Technol. 49:16–32.
  • Kaster KM, Grigoriyan A, Jennneman G, Voordouw G. 2007. Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea. Appl Microbiol Biotechnol. 75:195–203. doi:10.1007/s00253-006-0796-5
  • King RA, Miller JDA. 1971. Corrosion by the sulphate-reducing bacteria. Nature. 233:491–492. doi:10.1038/233491a0
  • Kryachko Y, Dong X, Sensen CW, Voordouw G. 2012. Compositions of microbial communities associated with oil and water in a mesothermic oil field. Antonie Van Leeuwenhoek. 101:493–506. doi:10.1007/s10482-011-9658-y
  • Larsen J, Sanders PF, Talbot RE. 2000. Experience with the use of tetrakishydroxymethylphosphonium sulfate (THPS) for the control of downhole hydrogen sulfide. NACE International. Corrosion/2000. Paper No. 00123.
  • Lenchi N, İnceoğlu Ö, Kebbouche-Gana S, Gana ML, Llirós M, Servais P, García-Armisen T. 2013. Diversity of microbial communities in production and injection waters of Algerian oilfields revealed by 16S rRNA gene amplicon 454 pyrosequencing. PLoS One. 8:e66588. doi:10.1371/journal.pone.0066588
  • Li Y, Jia R, Al-Mahamedh HH, Xu D, Gu T. 2016. Enhanced biocide mitigation of field biofilm consortia by a mixture of d-amino acids. Front Microbiol. 7:896.
  • Liebensteiner MG, Tsesmetzis N, Stams AJ, Lomans BP. 2014. Microbial redox processes in deep subsurface environments and the potential application of (per) chlorate in oil reservoirs. Front Microbiol. 5:428.
  • Little B, Wagner P, Hart K, Ray R, Lavoie D, Nealson K, Aguilar C. 1998. The role of biomineralization in microbiologically influenced corrosion. Biodegradation. 9:1–10. doi:10.1023/A:1008264313065
  • Lower SK, Hochella MF, Beveridge TJ. 2001. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science. 292:1360–1363. doi:10.1126/science.1059567
  • Mand J, Park HS, Jack TR, Voordouw G. 2014. The role of acetogens in microbially influenced corrosion of steel. Front Microbiol. 5:268.
  • Marques TT, Shiroma LS, de Jesus DP. 2015. Determination of tetrakis (hydroxymethyl) phosphonium sulfate in commercial formulations and cooling water by capillary electrophoresis with contactless conductivity detection. J Sep Sci. 38:852–857. doi:10.1002/jssc.201401288
  • Mbadinga SM, Wang LY, Zhou L, Liu JF, Gu JD, Mu BZ. 2011. Microbial communities involved in anaerobic degradation of alkanes. Int Biodeterior Biodegradation. 65:1–13. doi:10.1016/j.ibiod.2010.11.009
  • Menon P, Voordouw G. 2018. Impact of light oil toxicity on sulfide production by acetate-oxidizing, sulfate-reducing bacteria. Int Biodeterior Biodegradation. 126:208–215. doi:10.1016/j.ibiod.2016.11.021
  • Moore J, Massie-Schuh E, Doshi D, Schultz C, Castillo C, Patel B, Moore M, Rajan J, Ajayi B. 2017. Oilfield Biocide performance in the presence of shale formation rock. SPE International Conference on Oilfield Chemistry. Society of Petroleum Engineers/2017. Paper No. 184583-MS.
  • Muyzer G, Stams AJ. 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 6:441–454. doi:10.1038/nrmicro1892
  • Nemati M, Jenneman GE, Voordouw G. 2001. Impact of nitrate‐mediated microbial control of souring in oil reservoirs on the extent of corrosion. Biotechnol Prog. 17:852–859. doi:10.1021/bp010084v
  • Nguyen TM, Sheng X, Ting YP, Pehkonen SO. 2008. Biocorrosion of AISI 304 stainless steel by Desulfovibrio desulfuricans in seawater. Ind Eng Chem Res. 47:4703–4711. doi:10.1021/ie071468e
  • Schwermer CU, Lavik G, Abed RM, Dunsmore B, Ferdelman TG, Stoodley P, Gieseke A, de Beer D. 2008. Impact of nitrate on the structure and function of bacterial biofilm communities in pipelines used for injection of seawater into oil fields. Appl Environ Microbiol. 74:2841–2851. doi:10.1128/AEM.02027-07
  • Shannon CE. 1948. A mathematical theory of communication. Bell Syst Tech J. 27:379–423. doi:10.1002/j.1538-7305.1948.tb01338.x
  • Sharma M, Voordouw G. 2017. MIC detection and assessment-A holistic approach. In: Skovhus TL, Enning D, Lee JS, editors. Microbially influenced corrosion in the upstream oil and gas industry. New York: CRC Press; p. 177–212.
  • Sharma M, An D, Baxter K, Henderson M, Edillon L, Voordouw G. 2016. Understanding the role of microbes in frequent coiled tubing failures. NACE International. Corrosion/2016. Paper No. 7815.
  • Sharma M, An D, Liu T, Pinnock T, Cheng F, Voordouw G. 2017. Biocide-mediated corrosion of coiled tubing. PLoS One. 12:e0181934. doi:10.1371/journal.pone.0181934
  • Shen Y, Voordouw G. 2015. Primers for dsr genes and most probable number method for detection of sulfate-reducing bacteria in oil reservoirs. In: Hydrocarbon and lipid microbiology protocols. Berlin: Springer; p. 35–43.
  • Sherry A, Gray ND, Ditchfield AK, Aitken CM, Jones DM, Röling WF, Hallmann C, Larter SR, Bowler BF, Head IM. 2013. Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphate-reducing taxa. Int Biodeterior Biodegradation. 81:105–113. doi:10.1016/j.ibiod.2012.04.009
  • Silva TR, Verde LC, Neto ES, Oliveira VM. 2013. Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields. Int Biodeterior Biodegradation. 81:57–70. doi:10.1016/j.ibiod.2012.05.005
  • Stookey LL. 1970. Ferrozine-a new spectrophotometric reagent for iron. Anal Chem. 42:779–781. doi:10.1021/ac60289a016
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 28:2731–2739. doi:10.1093/molbev/msr121
  • Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S. 2010. Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol. 76:1783–1788. doi:10.1128/AEM.00668-09
  • Usher KM, Kaksonen AH, MacLeod ID. 2014. Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria. Corros Sci. 83:189–197. doi:10.1016/j.corsci.2014.02.014
  • Videla HA. 2002. Prevention and control of biocorrosion. Int Biodeterior Biodegradation. 49:259–270. doi:10.1016/S0964-8305(02)00053-7
  • Vigneron A, Alsop EB, Chambers B, Lomans BP, Head IM, Tsesmetzis N. 2016. Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Appl Environ Microbiol. 82:2545–2554. doi:10.1128/AEM.03842-15
  • Voordouw G, Menon P, Pinnock T, Sharma M, Shen Y, Venturelli A, Voordouw J, Sexton A. 2016. Use of homogeneously-sized carbon steel ball bearings to study microbially-influenced corrosion in oil field samples. Front Microbiol. 7:351.
  • Weimer PJ, Van Kavelaar MJ, Michel CB, Ng TK. 1988. Effect of phosphate on the corrosion of carbon steel and on the composition of corrosion products in two-stage continuous cultures of Desulfovibrio desulfuricans. Appl Environ Microbiol. 54:386–396.
  • Willmon J. 2010. THPS Degradation in the long-term preservation of sub-sea flow-lines and risers. NACE International. Corrosion/2010. Paper No. 10402.
  • Yu L, Duan J, Du X, Huang Y, Hou B. 2013. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry. Electrochem Commun. 26:101–104. doi:10.1016/j.elecom.2012.10.022
  • Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F. 1999. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature. 401:266–269. doi:10.1038/45777
  • Zhao K, Wen J, Gu T, Kopliku A, Cruz I. 2008. Mechanistic modeling of anaerobic THPS degradation in seawater under various conditions. NACE International. Corrosion/2008. Paper No. 08512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.