Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 1
332
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Colonization and growth of dehalorespiring biofilms on carbonaceous sorptive amendments

, , , , &
Pages 50-58 | Received 03 Jul 2018, Accepted 19 Dec 2018, Published online: 21 Feb 2019

References

  • Allison DG. 2003. The biofilm matrix. Biofouling. 19:139–150. doi: 10.1080/0892701031000072190
  • Berkaw M, Sowers KR, May HD. 1996. Anaerobic ortho dechlorination of polychlorinated biphenyls by estuarine sediments from Baltimore Harbor. Appl Environ Microbiol. 62:2534–2539.
  • Borja JQ, Auresenia JL, Gallardo SM. 2006. Biodegradation of polychlorinated biphenyls using biofilm grown with biphenyl as carbon source in fluidized bed reactor. Chemosphere. 64:555–559. doi: 10.1016/j.chemosphere.2005.11.047
  • Camper AK, LeChevallier MW, Broadaway SC, McFeters GA. 1985. Growth and persistence of pathogens on granular activated carbon filters. Appl Environ Microbiol. 50:1378–1382.
  • Camper AK, LeChevallier MW, Broadaway SC, McFeters GA. 1986. Bacteria associated with granular activated carbon particles in drinking water. Appl Environ Microbiol. 52:434–438.
  • Carrel M, Morales VL, Beltran MA, Derlon N, Kaufmann R, Morgenroth E, Holzner M. 2018. Biofilms in 3D porous media: delineating the influence of the pore network geometry, flow and mass transfer on biofilm development. Water Res. 134:280–291. doi: 10.1016/j.watres.2018.01.059
  • Celzard A, Marêché JF, Payot F, Furdin G. 2002. Electrical conductivity of carbonaceous powders. Carbon. 40:2801–2815. doi: 10.1016/S0008-6223(02)00196-3
  • Chen J, Wang C, Pan Y, Farzana SS, Tam NF-Y. 2018. Biochar accelerates microbial reductive debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in anaerobic mangrove sediments. J Hazard Mater. 341:177–186. doi: 10.1016/j.jhazmat.2017.07.063
  • Choi H, Al-Abed SR, Agarwal S. 2009. Catalytic role of palladium and relative reactivity of substituted chlorines during adsorption and treatment of PCBs on reactive activated carbon. Environ Sci Technol. 43:7510–7515. doi: 10.1021/es901298b
  • Chun CL, Payne RB, Sowers KR, May HD. 2013. Electrical stimulation of microbial PCB degradation in sediment. Water Res. 47:141–152. doi: 10.1016/j.watres.2012.09.038
  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol. 49:711–745. doi: 10.1146/annurev.mi.49.100195.003431
  • Cutter LA, Watts JE, Sowers KR, May HD. 2001. Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ Microbiol. 3:699–709. doi: 10.1046/j.1462-2920.2001.00246.x
  • Edwards SJ, Kjellerup BV. 2013. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol. 97:9909–9921. doi: 10.1007/s00253-013-5216-z
  • Endo S, Yabuki Y, Tanaka S. 2017. Comparing polyethylene and polyoxymethylene passive samplers for measuring sediment porewater concentrations of polychlorinated biphenyls: mutual validation and possible correction by polymer-polymer partition experiment. Chemosphere. 184:358–365.
  • Erickson MD. 1997. Analytical chemistry of PCBs. Boca Raton, FL: CRC Press.
  • Fagervold SK, Watts JE, May HD, Sowers KR. 2005. Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Appl Environ Microbiol. 71:8085–8090.
  • Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Haggblom MM. 2004. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol. 38:2075–2081.
  • Frankel ML, Bhuiyan TI, Veksha A, Demeter MA, Layzell DB, Helleur RJ, Hill JM, Turner RJ. 2016. Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresour Technol. 216:352–361.
  • Ghosh U, Luthy RG, Cornelissen G, Werner D, Menzie CA. 2011. In-situ sorbent amendments: a new direction in contaminated sediment management. Environ Sci Technol. 45:1163–1168.
  • Gomes HI, Dias-Ferreira C, Ribeiro AB. 2013. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Science Total Environ. 445:237–260.
  • Hale L, Luth M, Crowley D. 2015. Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biol Biochem. 81:228–235.
  • Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. 2015. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. Fems Microbiol Rev. 39:649–669.
  • Jefferson KK. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol Lett. 236:163–173.
  • Kjellerup B, Naff C, Edwards S, Ghosh U, Baker J, Sowers K. 2014. Effects of activated carbon on reductive dechlorination of PCBs by organohalide respiring bacteria indigenous to sediments. Water Res. 52:1–10.
  • Klüpfel L, Keiluweit M, Kleber M, Sander M. 2014. Redox properties of plant biomass-derived black carbon (biochar). Environ Sci Technol. 48:5601–5611.
  • Kongkhlang T, Kotaki M, Kousaka Y, Umemura T, Nakaya D, Chirachanchai S. 2008. Electrospun polyoxymethylene: spinning conditions and its consequent nanoporous nanofiber. Macromolecules. 41:4746–4752.
  • Lawrence JR, Neu TR. 1999. Confocal laser scanning microscopy for analysis of microbial biofilms. Methods Enzymol. 310:131–144.
  • Lefèvre E, Bossa N, Gardner CM, Gehrke GE, Cooper EM, Stapleton HM, Hsu-Kim H, Gunsch CK. 2017. Biochar and activated carbon act as promising amendments for promoting the microbial debromination of tetrabromobisphenol A. Water Res. 128:102–110.
  • Lombard NJ, Ghosh U, Kjellerup BV, Sowers KR. 2014. Kinetics and threshold level of 2,3,4,5-tetrachlorobiphenyl dechlorination by an organohalide respiring bacterium. Environ Sci Technol. 48:4353–4360.
  • Macedo AJ, Kuhlicke U, Neu TR, Timmis KN, Abraham WR. 2005. Three stages of a biofilm community developing at the liquid-liquid interface between polychlorinated biphenyls and water. Appl Environ Microbiol. 71:7301–7309.
  • May HD, Cutter LA, Miller GS, Milliken CE, Watts JEM, Sowers KR. 2006. Stimulatory and inhibitory effects of organohalides on the dehalogenating activities of PCB-dechlorinating bacterium o-17. Environ Sci Technol. 40:5704–5709.
  • McDonough KM, Fairey JL, Lowry GV. 2008. Adsorption of polychlorinated biphenyls to activated carbon: equilibrium isotherms and a preliminary assessment of the effect of dissolved organic matter and biofilm loadings. Water Res. 42:575–584.
  • Mercier A, Wille G, Michel C, Harris-Hellal J, Amalric L, Morlay C, Battaglia-Brunet F. 2013. Biofilm formation vs. PCB adsorption on granular activated carbon in PCB-contaminated aquatic sediment. J Soils Sediments. 13:793–800.
  • Mukerjee-Dhar G, Shimura M, Kimbara K. 1998. Degradation of polychlorinated biphenyl by cells of Rhodococcus opacus strain TSP203 immobilized in alginate and in solution. Enzyme Microb Technol. 23:34–41.
  • Neu TR, Lawrence JR. 2014. Investigation of microbial biofilm structure by laser scanning microscopy. Adv Biochem Eng Biotechnol. 146:1–51.
  • Oh SY, Son JG, Lim OT, Chiu PC. 2012. The role of black carbon as a catalyst for environmental redox transformation. Environ Geochem Health. 34:105–113.
  • Payne RB, Fagervold SK, May HD, Sowers KR. 2013. Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria. Environ Sci Technol. 47:3807–3815.
  • Rakowska MI, Kupryianchyk D, Harmsen J, Grotenhuis T, Koelmans AA. 2012. In situ remediation of contaminated sediments using carbonaceous materials. Environ Toxicol Chem. 31:693–704.
  • Saquing JM, Yu Y-H, Chiu PC. 2016. Wood-derived black carbon (biochar) as a microbial electron donor and acceptor. Environ Sci Technol Lett. 3:62–66.
  • Schlafer S, Meyer RL. 2017. Confocal microscopy imaging of the biofilm matrix. J Microbiol Methods. 138:50–59.
  • Smith HJ, Schmit A, Foster R, Littman S, Kuypers MM, Foreman CM. 2016. Biofilms on glacial surfaces: hotspots for biological activity. NPJ Biofilms Microbiomes. 2:16008.
  • Song Y, Bian Y, Wang F, Herzberger A, Yang X, Gu C, Jiang X. 2017. Effects of biochar on dechlorination of hexachlorobenzene and the bacterial community in paddy soil. Chemosphere. 186:116–123.
  • Sowers KR, May HD. 2013. In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet? Curr Opin Biotechnol. 24:482–488.
  • Sun X, Ghosh U. 2008. The effect of activated carbon on partitioning, desorption, and biouptake of native polychlorinated biphenyls in four freshwater sediments. Environ Toxicol Chem. 27:2287–2295.
  • Vasilyeva GK, Strijakova ER, Nikolaeva SN, Lebedev AT, Shea PJ. 2010. Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon. Environ Pollut. 158:770–777.
  • Waller SA, Packman AI, Hausner M. 2018. Comparison of biofilm cell quantification methods for drinking water distribution systems. J Microbiol Methods. 144:8–21.
  • Wiegel J, Wu Q. 2000. Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol. 32:1–15.
  • Yu L, Yuan Y, Tang J, Wang Y, Zhou S. 2015. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Sci Rep. 5:16221.
  • Zhen HJ, Du SY, Rodenburg LA, Mainelis G, Fennell DE. 2014. Reductive dechlorination of 1,2,3,7,8-pentachlorodibenzo-p-dioxin and Aroclor 1260, 1254 and 1242 by a mixed culture containing Dehalococcoides mccartyi strain 195. Water Res. 52:51–62.
  • Zimmerman JR, Werner D, Ghosh U, Millward RN, Bridges TS, Luthy RG. 2005. Effects of dose and particle size on activated carbon treatment to sequester polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine sediments. Environ Toxicol Chem. 24:1594–1601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.