Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 3
441
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Biofouling of stainless steel surfaces by four common pathogens: the effects of glucose concentration, temperature and surface roughness

, , , , , , , & show all
Pages 273-283 | Received 19 May 2018, Accepted 22 Jan 2019, Published online: 26 Apr 2019

References

  • Absolom DR, Lamberti FV, Policova Z, Zingg W, Oss CJ. V, Neumann AW. 1983. Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol. 46:90–97.
  • Akbas MY. 2015. Bacterial biofilms and their new control strategies in food industry. In: Méndez-Vilas A, editor. The battle against microbial pathogens: basic science, technological advances and educational programs. [accessed 2017 Jun 6]. http://www.microbiology5.org/microbiology5/book/383-394.pdf
  • Ammar Y, Swailes D, Bridgens B, Chen J. 2015. Influence of surface roughness on the initial formation of biofilm. Surf Coat Technol. 284:410–416. doi:10.1016/j.surfcoat.2015.07.062
  • Andersen TE, Kingshott P, Palarasah Y, Benter M, Alei M, Kolmos HJ. 2010. A flow chamber assay for quantitative evaluation of bacterial surface colonization used to investigate the influence of temperature and surface hydrophilicity on the biofilm forming capacity of uropathogenic Escherichia coli. J Microbiol Methods. 81:135–140. doi:10.1016/j.mimet.2010.02.009
  • Barker J, Bloomfield SF. 2000. Survival of Salmonella in bathrooms and toilets in domestic homes following salmonellosis. J Appl Microbiol. 89:137–144. doi:10.1046/j.1365-2672.2000.01091.x
  • Belessi C-EA, Gounadaki AS, Psomas AN, Skandamis PN. 2011. Efficiency of different sanitation methods on Listeria monocytogenes biofilms formed under various environmental conditions. Int J Food Microbiol. 145:S46–S52. doi:10.1016/j.ijfoodmicro.2010.10.020
  • Blackledge MS, Worthington RJ, Melander C. 2013. Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol. 13:699–706. doi:10.1016/j.coph.2013.07.004
  • Bohinc K, Dražić G, Fink R, Oder M, Jevšnik M, Nipič D, Godič-Torkar K, Raspor P. 2014. Available surface dictates microbial adhesion capacity. Int J Adhes Adhes. 50:265–272. doi:10.1016/j.ijadhadh.2014.01.027
  • Bohinc K, Dražić G, Abram A, Jevšnik M, Jeršek B, Nipič D, Kurinčič M, Raspor P. 2016. Metal surface characteristics dictate bacterial adhesion capacity. Int J Adhes Adhes. 68:39–46. doi:10.1016/j.ijadhadh.2016.01.008
  • Boulané‐Petermann L. 1996. Processes of bioadhesion on stainless steel surfaces and cleanability: a review with special reference to the food industry. Biofouling. 10:275–300. doi:10.1080/08927019609386287
  • Carpentier B, Cerf O. 2011. Review-Persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol. 145:1–8. doi:10.1016/j.ijfoodmicro.2011.01.005
  • Chen MJ, Zhang Z, Bott TR. 2005. Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes. Colloids Surf B Biointerfaces. 43:61–71. doi:10.1016/j.colsurfb.2005.04.004
  • Chen M, Yu Q, Sun H. 2013. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci. 14:18488–18501. doi:10.3390/ijms140918488
  • Chuard C, Lucet JC, Rohner P, Herrmann M, Auckenthaler R, Waldvogel FA, Lew DP. 1991. Resistance of Staphylococcus aureus recovered from infected foreign body in vivo to killing by antimicrobials. J Infect Dis. 163:1369–1373.
  • Constantin OE. 2009. Bacterial biofilms formation at air liquid interfaces. Innov Romanian Food Biotechnol. 5:18–22.
  • Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP. 2012. Surface topographical factors influencing bacterial attachment. Adv Colloid Interf Sci. 178-182:142–149.
  • Cvetkovski S. 2012. Stainless steel in contact with food and beverage. Metall Mater Eng. 18:283–293.
  • Di Bonaventura G, Piccolomini R, Paludi D, D’Orio V, Vergara A, Conter M, Ianieri A. 2008. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol. 104:1552–1561. doi:10.1111/j.1365-2672.2007.03688.x
  • Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis. 8:881–890. doi:10.3201/eid0809.020063
  • Donlan RM, Costerton JW. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 15:167–193. doi:10.1128/CMR.15.2.167-193.2002
  • International Organization for Standardization Geneva (ISO). 1997. EN ISO 4287:1997. Geometrical product specifications (GPS) - surface texture: profile method - terms, definitions and surface texture parameters.
  • Flemming H-C. 2011. Microbial Biofouling: unsolved problems, insufficient approaches, and possible solutions. In: Flemming H-C, Wingender J, Szewzyk U, editors. Biofilm highlights [Internet]. Springer Berlin Heidelberg; p. 81–109. [accessed 2017 Jun 1] http://link.springer.com/chapter/10.1007/978-3-642-19940-0_5.
  • Gandhi M, Chikindas ML. 2007. Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol. 113:1–15. doi:10.1016/j.ijfoodmicro.2006.07.008
  • Garrett TR, Bhakoo M, Zhang Z. 2008. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci. 18:1049–1056. doi:10.1016/j.pnsc.2008.04.001
  • Haznedaroglu BZ, Bolster CH, Walker SL. 2008. The role of starvation on Escherichia coli adhesion and transport in saturated porous media. Water Res. 42:1547–1554. doi:10.1016/j.watres.2007.10.042
  • Herald PJ, Zottola EA. 1988. Attachment of Listeria monocytogenes to stainless steel surfaces at various temperatures and pH values. J Food Science. 53:1549–1562. doi:10.1111/j.1365-2621.1988.tb09321.x
  • Hirotsu C. 2017. Advanced analysis of variance. 1st ed. New York: John & Wiley Series in Probability and Statistics.
  • Jackson DW, Simecka JW, Romeo T. 2002. Catabolite repression of Escherichia coli biofilm formation. J Bacteriol. 184:3406–3410. doi:10.1128/JB.184.12.3406-3410.2002
  • Kovačević D, Pratnekar R, Godič-Torkar K, Salopek J, Dražić G, Abram A, Bohinc K. 2016. Influence of polyelectrolyte multilayer properties on bacterial adhesion capacity. Polymers. 8:345. doi:10.3390/polym8100345
  • Knobloch JK-M, Von Osten H, Horstkotte MA, Rohde H, Mack D. 2002. Minimal attachment killing (MAK): a versatile method for susceptibility testing of attached biofilm-positive and negative Staphylococcus epidermidis. Med Microbiol Immunol (Berl). 191:107–114. doi:10.1007/s00430-002-0125-2
  • Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H. 2008. Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng. 106:381–386. doi:10.1263/jbb.106.381
  • Kurinčič M, Jeršek B, Klančnik A, Možina SS, Fink R, Dražić G, Raspor P, Bohinc K. 2016. Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential. Arh Hig Rada Toksikol. 67:39–45. doi:10.1515/aiht-2016-67-2720
  • Kyoui D, Hirokawa E, Takahashi H, Kuda T, Kimura B. 2016. Effect of glucose on Listeria monocytogenes biofilm formation, and assessment of the biofilm’s sanitation tolerance. Biofouling. 32:815–826. doi:10.1080/08927014.2016.1198953
  • Limoli DH, Jones CJ, Wozniak DJ. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr. 3.
  • Lourenço A, de Las Heras A, Scortti M, Vazquez-Boland J, Frank JF, Brito L. 2013. Comparison of Listeria monocytogenes exoproteomes from biofilm and planktonic state: Lmo2504, a protein associated with biofilms. Appl Environ Microbiol. 79:6075–6082. doi:10.1128/AEM.01592-13
  • Martinuzzi RJ, Salek MM. 2010. Numerical simulation of fluid flow and hydrodynamic analysis in commonly used biomedical devices in biofilm studies. In: Angermann L, editor. Numerical simulations - examples and applications in computational fluid dynamics. InTech; [accessed 2017 Jun 1]. http://www.intechopen.com/books/numerical-simulations-examples-and-applications-in-computational-fluid-dynamics/numerical-simulation-of-fluid-flow-and-hydrodynamic-analysis-in-commonly-used-biomedical-devices-in
  • Moreira JMR, Gomes LC, Araújo JDP, Miranda JM, Simões M, Melo LF, Mergulhão FJ. 2013. The effect of glucose concentration and shaking conditions on Escherichia coli biofilm formation in microtiter plates. Chem Eng Sci. 94:192–199. doi:10.1016/j.ces.2013.02.045
  • Møretrø T, Langsrud S. 2017. Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Compr Rev Food Sci Food Saf. 16:1022–1041. doi:10.1111/1541-4337.12283
  • Nan L, Yang K, Ren G. 2015. Anti-biofilm formation of a novel stainless steel against Staphylococcus aureus. Mater Sci Eng C. 51:356–361. doi:10.1016/j.msec.2015.03.012
  • Naves P, del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, Rodríguez-Cerrato V, Ponte MC, Soriano F. 2008. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J Appl Microbiol. 105:585–590. doi:10.1111/j.1365-2672.2008.03791.x
  • O'Toole GA, Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 30:295–304. doi:10.1046/j.1365-2958.1998.01062.x
  • Pompermayer DMC, Gaylarde CC. 2000. The influence of temperature on the adhesion of mixed cultures of Staphylococcus aureus and Escherichia coli to polypropylene. Food Microbiol. 17:361–365. doi:10.1006/fmic.1999.0291
  • Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. 2015. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res Int. 2015:1. doi:10.1155/2015/759348
  • Raspor P, Jevsnik M. 2008. Good nutritional practice from producer to consumer. Crit Rev Food Sci Nutr. 48:276–292. doi:10.1080/10408390701326219
  • Sadekuzzaman M, Yang S, Mizan MFR, Ha SD. 2015. Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Saf. 14:491–509. doi:10.1111/1541-4337.12144
  • Salgado CD, Calfee DP, Farr BM. 2003. Interventions to prevent methicillin-resistant Staphylococcus aureus transmission in health care facilities: what works? Clin Microbiol Newsl. 25:137–144. doi:10.1016/S0196-4399(03)80042-9
  • Schmidt RH, Erickson DJ, Sims S, Wolff P. 2012. Characteristics of food contact surface materials: stainless steel. Food Prot Trends. 32:574–584.
  • Shi X, Zhu X. 2009. Biofilm formation and food safety in food industries. Trends Food Sci Technol. 20:407–413. doi:10.1016/j.tifs.2009.01.054
  • Srey S, Jahid IK, Ha S-D. 2013. Biofilm formation in food industries: a food safety concern. Food Control. 31:572–585. doi:10.1016/j.foodcont.2012.12.001
  • Van Houdt R, Michiels CW. 2010. Biofilm formation and the food industry, a focus on the bacterial outer surface: biofilm formation and the bacterial outer surface. J Appl Microbiol. 109:1117–1131. doi:10.1111/j.1365-2672.2010.04756.x
  • Verran J, Jones M. 2000. Problems of biofilms in the food and baverage industry. In: Walker J, Surmann S, and Jass J. editors. Ind biofouling detect prev control. Chichester: Wiley; p. 145–173.
  • Verran J, Rowe DL, Boyd RD. 2001. The effect of nanometer dimension topographical features on the hygienic status of stainless steel. J Food Prot. 64:1183–1187. doi:10.4315/0362-028X-64.8.1183
  • Vickery K, Pajkos A, Cossart Y. 2004. Removal of biofilm from endoscopes: evaluation of detergent efficiency. Am J Infect Control. 32:170–176. doi:10.1016/j.ajic.2003.10.009
  • Vickery K, Hu H, Jacombs AS, Bradshaw DA, Deva AK. 2013. A review of bacterial biofilms and their role in device-associated infection. Healthc Infect. 18:61–66. doi:10.1071/HI12059
  • Vogt RL, Dippold L. 2005. Escherichia coli O157:H7 outbreak associated with consumption of ground beef, June-July 2002. Public Health Rep. 120:174–178. doi:10.1177/003335490512000211
  • Whitehead KA, Verran J. 2006. The Effect of surface topography on the retention of microorganisms. Food Bioprod Process. 84:253–259. doi:10.1205/fbp06035
  • Zeraik AE, Nitschke M. 2012. Influence of growth media and temperature on bacterial adhesion to polystyrene surfaces. Braz Arch Biol Technol. 55:569–576. doi:10.1590/S1516-89132012000400012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.