Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 2
341
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Distribution, diversity and functional dissociation of the mac genes in marine biofilms

, , , , , & show all
Pages 230-243 | Received 31 Oct 2018, Accepted 06 Mar 2019, Published online: 05 Apr 2019

References

  • Bastian M, Heymann S, Jacomy M. 2009. Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media.
  • Broman E, Sjöstedt J, Pinhassi J, Dopson M. 2017. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome. 5:96 doi: 10.1186/s40168-017-0311-5
  • Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F, Stulik J. 2013. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect Immun. 81:629–635. doi: 10.1128/IAI.01035-12
  • Characklis WG, Cooksey KE. 1983. Biofilms and microbial fouling. Adv Appl Microbiol. 29:93–138. doi: 10.1016/S0065-2164(08)70355-1
  • Chung HC, Lee OO, Huang YL, Mok SY, Kolter R, Qian PY. 2010. Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans. Isme J. 4:817. doi: 10.1038/ismej.2009.157
  • Davey ME, O'toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 64:847–867. doi: 10.1128/MMBR.64.4.847-867.2000
  • Ding W, Ma C, Zhang W, Chiang H, Tam C, Xu Y, Zhang G, Qian PY. 2018. Anti-biofilm effect of a butenolide/polymer coating and metatranscriptomic analyses. Biofouling. 34:111–122. doi: 10.1080/08927014.2017.1409891
  • Donlan RM. 2001. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis. 33:1387–1392. doi: 10.1086/322972
  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. 2013. Pfam: the protein families database. Nucleic Acids Res. 42:222–230.
  • Freckelton ML, Nedved BT, Hadfield MG. 2017. Induction of invertebrate larval settlement; different bacteria, different mechanisms? Sci Rep. 7:42557. doi: 10.1038/srep42557
  • González O, Ortíz-Castro R, Díaz-Pérez C, Díaz-Pérez AL, Magaña-Dueñas V, López-Bucio J, Campos-García J. 2017. Non-ribosomal peptide synthases from Pseudomonas aeruginosa play a role in cyclodipeptide biosynthesis, quorum-sensing regulation, and root development in a plant host. Microb Ecol. 73:616–629. doi: 10.1007/s00248-016-0896-4
  • Gottschick C, Deng ZL, Vital M, Masur C, Abels C, Pieper DH, Rohde M, Mendling W, Wagner-Döbler I. 2017. Treatment of biofilms in bacterial vaginosis by an amphoteric tenside pessary-clinical study and microbiota analysis. Microbiome. 5:119. doi: 10.1186/s40168-017-0326-y
  • Hadfield MG. 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Ann Rev Mar Sci. 3:453–470. doi: 10.1146/annurev-marine-120709-142753
  • Hadfield MG, Unabia CC, Smith CM, Michael TM. 1994. Settlement preferences of the ubiquitous fouler Hydroides elegans. In: Thompson MF, Nagabhushanam R, Sarojini R, Fingerman M, editors. Recent Developments in Biofouling Control. New Delhi (ND): Oxford and IBH Pub Company; p. 65–74.
  • Harder T, Qian PY. 1999. Induction of larval attachment and metamorphosis in the serpulid polychaete Hydroides elegans by dissolved free amino acids: isolation and identification. Mar Ecol Prog Ser. 179:259–271. doi: 10.3354/meps179259
  • Haro-Moreno JM, López-Pérez M, José R, Picazo A, Camacho A, Rodriguez-Valera F. 2018. Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment. Microbiome. 6:128. doi: 10.1186/s40168-018-0513-5
  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 146:2395–2407. doi: 10.1099/00221287-146-10-2395
  • Huang YL, Dobretsov S, Ki JS, Yang LH, Qian PY. 2007. Presence of acyl-homoserine lactone in subtidal biofilm and the implication in larval behavioral response in the polychaete Hydroides elegans. Microb Ecol. 54:384–392. doi: 10.1007/s00248-007-9210-9
  • Huang SY, Hadfield MG. 2003. Composition and density of bacterial biofilms determine larval settlement of the polychaete Hydroides elegans. Mar Ecol Prog Ser. 260:161–172. doi: 10.3354/meps260161
  • Huggett MJ, Nedved BT, Hadfield MG. 2009. Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans. Biofouling. 25:387–399. doi: 10.1080/08927010902823238
  • Huson DG, Auch AF, Qi J, Schuster SC. 2007. MEGAN analysis of metagenomic data. Genome Res. 17:377–386. doi: 10.1101/gr.5969107
  • Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA. 2018. Bacterial biofilm and associated infections. J Chin Med Assoc. 81:7–11. doi: 10.1016/j.jcma.2017.07.012
  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33:1870–1874. doi: 10.1093/molbev/msw054
  • Lam C, Harder T, Qian PY. 2005. Induction of larval settlement in the polychaete Hydroides elegans by extracellular polymers of benthic diatoms. Mar Ecol Prog Ser. 286:145–154. doi: 10.3354/meps286145
  • Lau SCK, Harder T, Qian PY. 2003. Induction of larval settlement in the serpulid polychaete Hydroides elegans (Haswell): role of bacterial extracellular polymers. Biofouling. 19:197–204. doi: 10.1080/08927014.2003.10382982
  • Lee OO, Chung HC, Yang J, Wang Y, Dash S, Wang H, Qian PY. 2014. Molecular techniques revealed highly diverse microbial communities in natural marine biofilms on polystyrene dishes for invertebrate larval settlement. Microb Ecol. 68:81–93. doi: 10.1007/s00248-013-0348-3
  • Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, Yamashita H, Lam TW. 2016. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 102:3–11. doi: 10.1016/j.ymeth.2016.02.020
  • Liu L, Hao T, Xie Z, Horsman GP, Chen Y. 2016. Genome mining unveils widespread natural product biosynthetic capacity in human oral microbe Streptococcus mutans. Sci Rep. 6:37479. doi: 10.1038/srep37479
  • Michas A, Vestergaard G, Trautwein K, Avramidis P, Hatzinikolaou DG, Vorgias CE, Wilkes H, Rabus R, Schloter M, Schöler A. 2017. More than 2500 years of oil exposure shape sediment microbiomes with the potential for syntrophic degradation of hydrocarbons linked to methanogenesis. Microbiome. 5:118. doi: 10.1186/s40168-017-0337-8
  • Milano T, Paiardini A, Grgurina I, Pascarella S. 2013. Type I pyridoxal 5'-phosphate dependent enzymatic domains embedded within multimodular nonribosomal peptide synthetase and polyketide synthase assembly lines . BMC Struct Biol. 13:26. doi: 10.1186/1472-6807-13-26
  • Nedved BT, Hadfield MG. 2009. Hydroides elegans (Annelida: Polychaeta): a model for biofouling research. In: Flemming HC, Murthy PS, Venkatesan R, Cooksey K, editors. Marine and Industrial Biofouling. Berlin Heidelberg: Springer; p. 203–217.
  • Nikolaev YA, Plakunov VK. 2007. Biofilm-“City of microbes” or an analogue of multicellular organisms? Microbiology. 76:125–138. doi: 10.1134/S0026261707020014
  • Olson ME, Ceri H, Morck DW, Buret AG, Read RR. 2002. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 66:86.
  • Patel RK, Jain M. 2012. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE. 7:30619.
  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, et al. 2012. The Pfam protein families database. Nucleic Acids Res. 40:290–301.
  • Qian PY, Dahms HU. 2008. A Triangle Model: environmental changes affect biofilms that affect larval settlement. In: Flemming HC, Murthy PS, Venkatesan R, Cooksey K, editors. Marine and Industrial Biofouling. Berlin Heidelberg: Springer; p. 315–328.
  • Qian PY, Lau SC, Dahms HU, Dobretsov S, Harder T. 2007. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar Biotechnol. 9:399–410. doi: 10.1007/s10126-007-9001-9
  • Qian PY, Pechenik JA. 1998. Effects of larval starvation and delayed metamorphosis on juvenile survival and growth of the tube-dwelling polychaete Hydroides elegans (Haswell). J Exp Mar Bio Ecol. 227:169–185. doi: 10.1016/S0022-0981(97)00267-0
  • Raina JB. 2018. The life aquatic at the microscale. mSystems. 3:00117–00150.
  • Rajala P, Bomberg M, Vepsäläinen M, Carpén L. 2017. Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater. Biofouling. 33:195–209. doi: 10.1080/08927014.2017.1285914
  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 184:1140–1154. doi: 10.1128/jb.184.4.1140-1154.2002
  • Schwan IDS, Brasil A, Neves D, Dias GM. 2016. The invasive worm Hydroides elegans (Polychaeta–Serpulidae) in southeastern Brazil and its potential to dominate hard substrata. Mar Biol Res. 12:96–103. doi: 10.1080/17451000.2015.1080370
  • Shikuma NJ, Antoshechkin I, Medeiros JM, Pilhofer M, Newman DK. 2016. Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc Natl Acad Sci USA. 113:10097–10102. doi: 10.1073/pnas.1603142113
  • Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK. 2014. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science. 343:529–533. doi: 10.1126/science.1246794
  • Smolentseva O, Gusarov I, Gautier L, Shamovsky I, DeFrancesco AS, Losick R, Nudler E. 2017. Mechanism of biofilm-mediated stress resistance and lifespan extension in C. elegans. Sci Rep. 7:7137. doi: 10.1038/s41598-017-07222-8
  • Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol. 56:187. doi: 10.1146/annurev.micro.56.012302.160705
  • Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A, et al. 2015. Ocean plankton. Structure and function of the global ocean microbiome. Science. 348:1261359. doi: 10.1126/science.1261359
  • Tian RM, Zhang W, Cai L, Wong YH, Ding W, Qian PY. 2017. Genome reduction and microbe-host interactions drive adaptation of a sulfur-oxidizing bacterium associated with a cold seep sponge. mSystems. 21:00116–00184.
  • Unabia CRC, Hadfield MG. 1999. Role of bacteria in larval settlement and metamorphosis of the polychaete Hydroides elegans. Mar Biol. 133:55–64. doi: 10.1007/s002270050442
  • Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA. 2005. Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol. 187:6571–6576. doi: 10.1128/JB.187.18.6571-6576.2005
  • Wu M, Scott AJ. 2012. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics. 28:1033–1034. doi: 10.1093/bioinformatics/bts079
  • Zhang W, Wang Y, Bougouffa S, Tian R, Cao H, Li Y, Cai L, Wong YH, Zhang G, Zhou G, et al. 2015b. Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool. Environ Microbiol. 17:4089–4104. doi: 10.1111/1462-2920.12978
  • Zhang W, Ding W, Li YX, Tam CK, Bougouffa S, Wang RJ, Pei B, Chiang H, Leung P, Lu Y, et al. 2019. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nature Commun. 10:517. doi: 10.1038/s41467-019-08463-z
  • Zhang W, Sun J, Ding W, Lin J, Tian R, Lu L, Liu X, Shen XH, Qian PY. 2015a. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development. Front Cell Infect Microbiol. 5:40.
  • Zhang W, Tian RM, Sun J, Bougouffa S, Ding W, Cai L, Lan Y, Tong H, Li Y, Jamieson AJ, et al. 2018. Genome reduction in Psychromonas species within the gut of an amphipod from the ocean's deepest point. mSystems. 3:e00009–e00018.
  • Zhu W, Lomsadze A, Borodovsky M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38:1–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.