Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 4
817
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Mini-review: efficacy of lytic bacteriophages on multispecies biofilms

, &
Pages 472-481 | Received 08 Feb 2019, Accepted 27 Apr 2019, Published online: 30 May 2019

References

  • Adams MH & Park BH. 1956. An enzyme produced by a phage-host cell system. II. The properties of the polysaccharide depolymerase. Virology. 2:719–736.
  • Allewell NM. 2016. Introduction to biofilms. Thematic Minireview Series. J Biol Chem. 291:12527–12528. doi:10.1074/jbc.R116.734103
  • Allison DG. 2003. The biofilm matrix. Biofouling. 19:139–150. doi:10.1080/0892701031000072190
  • Alves DR, Perez-Esteban P, Kot W, Bean JE, Arnot T, Hansen LH, Enright MC & Jenkins AT. 2016. A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol. 9:61–74. doi:10.1111/1751-7915.12316
  • Bessler W, Fehmel F, Freund-Molbert E, Knufermann H & Stirm S. 1975. Escherichia coli capsule bacteriophages. IV. Free capsule depolymerase 29. J Virol. 15:976–984.
  • Bhattacharjee AS, Choi J, Motlagh AM, Mukherji ST & Goel R. 2015. Bacteriophage therapy for membrane biofouling in membrane bioreactors and antibiotic-resistant bacterial biofilms. Biotechnol Bioeng. 112:1644–1654. doi:10.1002/bit.25574
  • Briandet R, Lacroix-Gueu P, Renault M, Lecart S, Meylheuc T, Bidnenko E, Steenkeste K, Bellon-Fontaine M.-N. & Fontaine-Aupart M.-P. 2008. Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Appl Environ Microbiol. 74:2135–2143. doi:10.1128/AEM.02304-07
  • Burmolle M, Webb JS, Rao D, Hansen LH, Sorensen SJ & Kjelleberg S. 2006. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 72:3916–3923. doi:10.1128/AEM.03022-05
  • Carson L, Gorman SP & Gilmore BF. 2010. The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunol Med Microbiol. 59:447–455. doi:10.1111/j.1574-695X.2010.00696.x
  • Ceri H, Olson M, Stremick C, Read R, Morck D & Buret A. 1999. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 37:1771–1776.
  • Chan BK & Abedon ST. 2015. Bacteriophages and their enzymes in biofilm control. Curr Pharm Des. 21:85–99.
  • Chhibber S, Bansal S & Kaur S. 2015. Disrupting the mixed-species biofilm of Klebsiella pneumoniae B5055 and Pseudomonas aeruginosa PAO using bacteriophages alone or in combination with xylitol. Microbiology. 161:1369–1377. doi:10.1099/mic.0.000104
  • Coenye T & Nelis HJ. 2010. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods. 83:89–105. doi:10.1016/j.mimet.2010.08.018
  • Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA & Rumbaugh KP. 2011. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PloS one. 6:e27317. doi:10.1371/journal.pone.0027317
  • de Beer D & Stoodley P. 2006. Microbial biofilms. The prokaryotes. Springer.
  • Deveau H, van Calsteren M-R & Moineau S. 2002. Effect of exopolysaccharides on phage-host interactions in Lactococcus lactis. Appl Environ Microbiol. 68:4364–4369. doi:10.1128/AEM.68.9.4364-4369.2002
  • Drilling A, Morales S, Jardeleza C, Vreugde S, Speck P & Wormald P-J. 2014. Bacteriophage reduces biofilm of Staphylococcus aureus ex vivo isolates from chronic rhinosinusitis patients. Am J Rhinol Allergy. 28:3–11. doi:10.2500/ajra.2014.28.4001
  • Flemming H-C. & Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol. 8:623–633. doi:10.1038/nrmicro2415
  • Gilbert P, Allison D & Mcbain A. 2002. Biofilms in vitro and in vivo: do singular mechanisms imply cross‐resistance? J Appl Microbiol. 92.
  • Golkar Z, Bagasra O & Pace D. 2014. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries. 8:129–136.
  • González S, Fernández L, Campelo A, Gutiérrez D, Martínez B, Rodríguez A & García P. 2016. The behavior of Staphylococcus aureus dual-species biofilms treated with bacteriophage phiIPLA-RODI depends on the accompanying microorganism. Appl Environ Microbiol. AEM. 02821-16.
  • Gutierrez D, Rodriguez-Rubio L, Martinez B, Rodriguez A & Garcia P. 2016. Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol. 7:825.
  • Gutierrez D, Vandenheuvel D, Martinez B, Rodriguez A, Lavigne R & Garcia P. 2015. Two phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-species staphylococcal biofilms. Appl Environ Microbiol. 81:3336–3348. doi:10.1128/AEM.03560-14
  • Hanlon G, Denyer S, Olliff C & Ibrahim L. 2001. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 67:2746–2753. doi:10.1128/AEM.67.6.2746-2753.2001
  • Harcombe W & Bull J. 2005. Impact of phages on two-species bacterial communities. Appl Environ Microbiol. 71:5254–5259. doi:10.1128/AEM.71.9.5254-5259.2005
  • Harper D, Parracho H, Walker J, Sharp R, Hughes G, Werthén M, Lehman S & Morales S. 2014. Bacteriophages and biofilms. Antibiotics. 3:270–284. doi:10.3390/antibiotics3030270
  • Henry M, Lavigne R & Debarbieux L. 2013. Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother. 57:5961–5968. doi:10.1128/AAC.01596-13
  • Housby J & Mann N. 2009. Phage therapy. Drug Discov Today. 14:536–540. doi:10.1016/j.drudis.2009.03.006
  • Høyland-Kroghsbo N, Mærkedahl R & Svenningsen S. 2013. A quorum-sensing-induced bacteriophage defense mechanism. MBio. 4:e00362–12.
  • Hu J, Miyanaga K & Tanji Y. 2012. Diffusion of bacteriophages through artificial biofilm models. Biotechnol Prog. 28:319–26. doi:10.1002/btpr.742
  • Hughes K, Sutherland I & Jones M. 1998. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology. 144:3039–3047. doi:10.1099/00221287-144-11-3039
  • Jensen E, Schrader H, Rieland B, Thompson T, Lee K, Nickerson K & Kokjohn T. 1998. Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol. 64:575–580.
  • Karunakaran E, Mukherjee J, Ramalingam B & Biggs C. 2011. “Biofilmology”: a multidisciplinary review of the study of microbial biofilms. Appl Microbiol Biotechnol. 90:1869–1881. doi:10.1007/s00253-011-3293-4
  • Kaur S, Harjai K & Chhibber S. 2016. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PloS one. 11:e0157626. doi:10.1371/journal.pone.0157626
  • Kay M, Erwin T, Mclean R & Aron G. 2011. Bacteriophage ecology in Escherichia coli and Pseudomonas aeruginosa mixed-biofilm communities. Appl Environ Microbiol. 77:821–829. doi:10.1128/AEM.01797-10
  • Kim S, Rahman M, Seol S, Yoon S & Kim J. 2012. Pseudomonas aeruginosa bacteriophage PA1O requires type IV pili for infection and shows broad bactericidal and biofilm removal activities. Appl Environ Microbiol. 78:6380–6385. doi:10.1128/AEM.00648-12
  • Kimura K & Itoh Y. 2003. Characterization of poly-γ-glutamate hydrolase encoded by a bacteriophage genome: possible role in phage infection of Bacillus subtilis encapsulated with poly-γ-glutamate. Appl Environ Microbiol. 69:2491–2497. doi:10.1128/AEM.69.5.2491-2497.2003
  • Kostakioti M, Hadjifrangiskou M & Hultgren S. 2013. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 3:a010306.
  • Krüger D & Bickle T. 1983. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev. 47:345.
  • Kutter E, de Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S & Abedon S. 2010. Phage therapy in clinical practice: treatment of human infections. Curr Pharmaceut Biotehnol. 11:69–86. doi:10.2174/138920110790725401
  • Kutter E, Kuhl S & Abedon S. 2015. Re-establishing a place for phage therapy in western medicine. Fut Microbiol. 10:685–688. doi:10.2217/fmb.15.28
  • Kwiatkowski B, Boschek B, Thiele H & Stirm S. 1982. Endo-N-acetylneuraminidase associated with bacteriophage particles. J Virol. 43:697–704.
  • Kwiatkowski B, Boschek B, Thiele H & Stirm S. 1983. Substrate specificity of two bacteriophage-associated endo-N-acetylneuraminidases. J Virol. 45:367–374.
  • Labrie S, Samson J & Moineau S. 2010. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 8:317–327. doi:10.1038/nrmicro2315
  • Lacroix-Gueu P, Briandet R, Leveque-Fort S, Bellon-Fontaine M & Fontaine-Aupart M. 2005. In situ measurements of viral particles diffusion inside mucoid biofilms. C R Biol. 328:1065–1072. doi:10.1016/j.crvi.2005.09.010
  • Li L.-L., Yu P, Wang X, Yu S.-S., Mathieu J, Yu H.-Q. & Alvarez P. J. J. E. S. N. 2017. Enhanced biofilm penetration for microbial control by polyvalent phages conjugated with magnetic colloidal nanoparticle clusters (CNCs). 4:1817–1826.
  • Liao K, Lehman S, Tweardy D, Donlan R & Trautner B. 2012. Bacteriophages are synergistic with bacterial interference for the prevention of Pseudomonas aeruginosa biofilm formation on urinary catheters. J Appl Microbiol. 113:1530–1539. doi:10.1111/j.1365-2672.2012.05432.x
  • Lin T, Lo Y, Tseng P, Chang S, Lin Y & Chen T. 2012. A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range. PLoS One. 7:e30954. doi:10.1371/journal.pone.0030954
  • Lu T & Collins J. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA. 104:11197–202. doi:10.1073/pnas.0704624104
  • Malki K, Kula A, Bruder K, Sible E, Hatzopoulos T, Steidel S, Watkins S & Putonti C. 2015. Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla. Virol J. 12.
  • Marza J, Soothill J, Boydell P & Collyns T. 2006. Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns. 32:644–646. doi:10.1016/j.burns.2006.02.012
  • Maura D & Debarbieux L. 2012. On the interactions between virulent bacteriophages and bacteria in the gut. Bacteriophage. 2:229–233.
  • Mcvay C, Velásquez M & Fralick J. 2007. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother. 51:1934–1938. doi:10.1128/AAC.01028-06
  • Merabishvili M, Pirnay J, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, van Parys L et al. 2009. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One. 4:e4944. doi:10.1371/journal.pone.0004944
  • Nelson D, Loomis L & Fischetti V. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA. 98:4107–4112. doi:10.1073/pnas.061038398
  • Neu T & Lawrence J. 1997. Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy. FEMS Microbiol Ecol. 24:11–25. doi:10.1111/j.1574-6941.1997.tb00419.x
  • O'Flaherty S, Ross R, Meaney W, Fitzgerald G, Elbreki M & Coffey A. 2005. Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol. 71:1836–1842. doi:10.1128/AEM.71.4.1836-1842.2005
  • O'Toole G, Kaplan H & Kolter R. 2000. Biofilm formation as microbial development. Annu Rev Microbiol. 54:49–79. doi:10.1146/annurev.micro.54.1.49
  • Pastagia M, Euler C, Chahales P, Fuentes-Duculan J, Krueger J & Fischetti V. 2011. A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother. 55:738–744. doi:10.1128/AAC.00890-10
  • Pastar I, Nusbaum A, Gil J, Patel S, Chen J, Valdes J, Stojadinovic O, Plano L, Tomic-Canic M & Davis S. 2013. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PloS one. 8:e56846. doi:10.1371/journal.pone.0056846
  • Pei R & Lamas-Samanamud G. 2014. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol. 80:5340–5348. doi:10.1128/AEM.01434-14
  • Pelkonen S, Aalto J & Finne J. 1992. Differential activities of bacteriophage depolymerase on bacterial polysaccharide: binding is essential but degradation is inhibitory in phage infection of K1-defective Escherichia coli. J Bacteriol. 174:7757–7761. doi:10.1128/jb.174.23.7757-7761.1992
  • Peters B, Jabra-Rizk M, Graeme A, Costerton J & Shirtliff M. 2012. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev. 25:193–213. doi:10.1128/CMR.00013-11
  • Pirnay J.-P., Blasdel B, Bretaudeau L, Buckling A, Chanishvili N, Clark J, Corte-Real S, Debarbieux L, Dublanchet A & de Vos D. 2015. Quality and safety requirements for sustainable phage therapy products. Pharm Res. 32:2173–2179. doi:10.1007/s11095-014-1617-7
  • Pirnay J.-P., Verbeken G, Rose T, Jennes S, Zizi M, Huys I, Lavigne R, Merabishvili M, Vaneechoutte M & Buckling A. 2012. Introducing yesterday’s phage therapy in today’s medicine. Fut Virol. 7:379–390. doi:10.2217/fvl.12.24
  • Pirnay J, de Vos D, Verbeken G, Merabishvili M, Chanishvili N, Vaneechoutte M, Zizi M, Laire G, Lavigne R, Huys I, et al. 2011. The phage therapy paradigm: pret-a-porter or sur-mesure? Pharm Res. 28:934–937. doi:10.1007/s11095-010-0313-5
  • Projan S. 2003. Why is big pharma getting out of antibacterial drug discovery? Curr Opin Microbiol. 6:427–430. doi:10.1016/j.mib.2003.08.003
  • Rickard A, Gilbert P, High N, Kolenbrander P & Handley P. 2003. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11:94–100. doi:10.1016/S0966-842X(02)00034-3
  • Rieger-Hug D & Stirm S. 1981. Comparative study of host capsule depolymerases associated with Klebsiella bacteriophages. Virology. 113:363–378. doi:10.1016/0042-6822(81)90162-8
  • Saxelin M, Nurmiaho E, Korhola M & Sundman V. 1979. Partial characterization of a new C3-type capsule-dissolving phage of Streptococcus cremoris. Can J Microbiol. 25:1182–1187. doi:10.1139/m79-183
  • Seth A, Geringer M, Nguyen K, Agnew S, Dumanian Z, Galiano R, Leung K, Mustoe T & Hong S. 2013. Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Plast Reconstr Surg. 131:225–234. doi:10.1097/PRS.0b013e31827e47cd
  • Shettigar K, Jain S, Bhat D, Acharya R, Ramachandra L, Satyamoorthy K & Murali T. 2016. Virulence determinants in clinical Staphylococcus aureus from monomicrobial and polymicrobial infections of diabetic foot ulcers. J Med Microbiol. 65:1392–1404. doi:10.1099/jmm.0.000370
  • Sillankorva S, Neubauer P & Azeredo J. 2010. Phage control of dual species biofilms of Pseudomonas fluorescens and Staphylococcus lentus. Biofouling. 26:567–575. doi:10.1080/08927014.2010.494251
  • Skillman L, Sutherland I & Jones M. 1998. The role of exopolysaccharides in dual species biofilm development. J Appl Microbiol. 85.
  • Smith R, M'Ikanatha N M. & Read A. 2015. Antibiotic resistance: a primer and call to action. Health Commun. 30:309–314. doi:10.1080/10410236.2014.943634
  • Son J.-S., Lee S.-J., Jun S, Yoon S, Kang S, Paik H, Kang J & Choi Y.-J. 2010. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol. 86:1439–1449. doi:10.1007/s00253-009-2386-9
  • Speck P. 2013. Antibiotics: avert an impending crisis. Nature. 496:169. doi:10.1038/496169a
  • Steenackers H, Parijs I, Foster K & Vanderleyden J. 2016. Experimental evolution in biofilm populations. FEMS Microbiol Rev. 40:373–397. doi:10.1093/femsre/fuw002
  • Storms Z & Sauvageau D. 2015. Modeling tailed bacteriophage adsorption: Insight into mechanisms. Virology. 485:355–362. doi:10.1016/j.virol.2015.08.007
  • Sutherland I & Wilkinson J. 1965. Depolymerases for bacterial exopolysaccharides obtained from phage-infected bacteria. Microbiology. 39:373–383.
  • Sutherland I. 1999. Polysaccharases for microbial exopolysaccharides. Carbohydrate Polymers. 38:319–328. doi:10.1016/S0144-8617(98)00114-3
  • Sutherland I, Hughes K, Skillman L & Tait K. 2004. The interaction of phage and biofilms. FEMS Microbiol Lett. 232:1–6. doi:10.1016/S0378-1097(04)00041-2
  • Tait K, Skillman L & Sutherland I. 2002. The efficacy of bacteriophage as a method of biofilm eradication. Biofouling. 18:305–311. doi:10.1080/0892701021000034418
  • Tay W, Chong K & Kline K. 2016. Polymicrobial-Host Interactions during Infection. J Mol Biol. 428:3355–3371. doi:10.1016/j.jmb.2016.05.006
  • Teh K, Flint S, Palmer J, Andrewes P, Bremer P & Lindsay D. 2014. Biofilm − an unrecognised source of spoilage enzymes in dairy products? Int Dairy J. 34:32–40. doi:10.1016/j.idairyj.2013.07.002
  • Teplitski M & Ritchie K. 2009. How feasible is the biological control of coral diseases? Trends Ecol Evol. 24:378–385. doi:10.1016/j.tree.2009.02.008
  • Thein Z, Samaranayake Y & Samaranayake L. 2007. Dietary sugars, serum and the biocide chlorhexidine digluconate modify the population and structural dynamics of mixed Candida albicans and Escherichia coli biofilms. APMIS. 115:1241–1251. doi:10.1111/j.1600-0643.2007.00735.x
  • Verbeken G, Pirnay J, de Vos D, Jennes S, Zizi M, Lavigne R, Casteels M & Huys I. 2012. Optimizing the European regulatory framework for sustainable bacteriophage therapy in human medicine. Arch Immunol Ther Exp (Warsz). 60:161–172. doi:10.1007/s00005-012-0175-0
  • Wei H. 2015. Bacteriophages, revitalized after 100 years in the shadow of antibiotics. Virol Sin. 30:1–2. doi:10.1007/s12250-014-3562-y
  • WHO 2014. Antimicrobial resistance global report on surveillance: 2014 summary.
  • Wills Q, Kerrigan C & Soothill J. 2005. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother. 49:1220–1221. doi:10.1128/AAC.49.3.1220-1221.2005
  • Wolcott R, Costerton J, Raoult D & Cutler S. 2013. The polymicrobial nature of biofilm infection. Clin Microbiol Infect. 19:107–112. doi:10.1111/j.1469-0691.2012.04001.x
  • Wood S, Kirkham J, Marsh P, Shore R, Nattress B & Robinson C. 2000. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res. 79:21–27. doi:10.1177/00220345000790010201
  • Woods J, Boegli L, Kirker K, Agostinho A, Durch A, Delancey Pulcini E, Stewart P & James G. 2012. Development and application of a polymicrobial, in vitro, wound biofilm model. J Appl Microbiol. 112:998–1006. doi:10.1111/j.1365-2672.2012.05264.x
  • Yan J, Mao J & Xie J. 2014. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs. 28:265–274. doi:10.1007/s40259-013-0081-y
  • Yilmaz C, Colak M, Yilmaz B, Ersoz G, Kutateladze M & Gozlugol M. 2013. Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am. 95:117–125. doi:10.2106/JBJS.K.01135
  • Yoong P, Schuch R, Nelson D & Fischetti V. 2004. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol. 186:4808–4812. doi:10.1128/JB.186.14.4808-4812.2004
  • Young R. 1992. Bacteriophage lysis: mechanism and regulation. Microbiol Rev. 56:430–481.
  • Young R & Gill J. 2015. MICROBIOLOGY. Phage therapy redux–What is to be done? Science. 350:1163–1164. doi:10.1126/science.aad6791
  • Zhang J, Ormala-Odegrip A, Mappes J & Laakso J. 2014. Top-down effects of a lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases. Ecol Evol. 4:4444–4453. doi:10.1002/ece3.1302
  • Zhao G, Usui M, Lippman S, James G, Stewart P, Fleckman P & Olerud J. 2013. Biofilms and Inflammation in chronic wounds. Adv Wound Care (New Rochelle). 2:389–399.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.