Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 6
463
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm

, , , , , & ORCID Icon show all
Pages 669-683 | Received 19 Nov 2018, Accepted 14 Jul 2019, Published online: 11 Aug 2019

References

  • Avci R, Davis BH, Wolfenden ML, Beech IB, Lucas K, Paul D. 2013. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media. Corr Sci. 76:267–274. doi: 10.1016/j.corsci.2013.06.049
  • Benton HP, Ivanisevic J, Mahieu NG, Kurczy ME, Johnson CH, Franco L, Rinehart D, Valentine E, Gowda H, Ubhi BK. 2015. Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem. 87:884–891. doi: 10.1021/ac5025649
  • Birss VI, Guha-Thakurta S, McGarvey CE, Quach S, Vanýsek P. 1997. An electrochemical study of the photolysis of adsorbed flavins. J Electroanal Chem. 423:13–21. doi: 10.1016/S0022-0728(96)04881-4
  • Bonifay V, Wawrik B, Sunner J, Snodgrass EC, Aydin E, Duncan KE, Callaghan AV, Oldham A, Liengen T, Beech I. 2017. Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion. Front Microbiol. 8:99.
  • Brileya KA, Camilleri LB, Zane GM, Wall JD, Fields MW. 2014. Biofilm growth mode optimizes carrying capacity during product inhibition syntrophy. Frontiers Microbiol. 5:693.
  • Brutinel ED, Gralnick JA. 2012. Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol. 93:41–48. doi: 10.1007/s00253-011-3653-0
  • Chen Y, Tang Q, Senko JM, Cheng G, Zhang Newby B-M, Castaneda H, Ju L-K. 2015. Long-term survival of Desulfovibrio vulgaris on carbon steel and associated pitting corrosion. Corr Sci. 90:89–100. doi: 10.1016/j.corsci.2014.09.016
  • Clark ME, Edelmann RE, Duley ML, Wall JD, Fields MW. 2007. Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments. Environ Microbiol. 9:2844–2854. doi: 10.1111/j.1462-2920.2007.01398.x
  • Clark ME, He Q, He Z, Huang KH, Alm EJ, Wan X-F, Hazen TC, Arkin AP, Wall JD, Zhou J-Z, Fields MW. 2006. Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion. Appl Environ Microbiol. 72:5578–5588. doi: 10.1128/AEM.00284-06
  • Clark ME, He Z, Redding AM, Joachimiak MP, Keasling JD, Zhou JZ, Arkin AP, Mukhopadhyay A, Fields MW. 2012. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state. BMC Genomics. 13:138. doi: 10.1186/1471-2164-13-138
  • Curley GP, Carr MC, Mayhew SG, Voordouw G. 1991. Redox and flavin-binding properties of recombinant flavodoxin from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem. 202:1091–1100. doi: 10.1111/j.1432-1033.1991.tb16475.x
  • DeLeon KB, Zane GM, Trotter V, Krantz G, Arkin AP, Butland G, Walian P, Fields MW, Wall JD. 2017. Unintended laboratory-driven evolution reveals genetic requirements for biofilm formation by Desulfovibrio vulgaris Hildenborough. mBio. 8:e01696–17.
  • Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F. 2004. Iron corrosion by novel anaerobic microorganisms. Nature. 427:829–832. doi: 10.1038/nature02321
  • Enning D, Garrelfs J. 2014. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol. 80:1226–1236. doi: 10.1128/AEM.02848-13
  • Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F. 2012. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol. 14:1772–1787. doi: 10.1111/j.1462-2920.2012.02778.x
  • Fieschi F, Nivière V, Frier C, Décout JL, Fontecave M. 1995. The mechanism and substrate specificity of the NADPH:flavin oxidoreductase from Escherichia coli. J Biol Chem. 270:30392–30400. doi: 10.1074/jbc.270.51.30392
  • Franco LC, Steinbeisser S, Zane GM, Wall JD, Fields MW. 2018. Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris. Appl Microbiol Biotechnol. 102:2839–2850. doi: 10.1007/s00253-017-8724-4
  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS. 2006. Electrically condutive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA. 103:11358–11363. doi: 10.1073/pnas.0604517103
  • Gralnick JA, Newman DK. 2007. Extracellular respiration. Mol Microbiol. 65:1–11. doi: 10.1111/j.1365-2958.2007.05778.x
  • Grininger M, Zeth K, Oesterhelt D. 2006. Dodecins: a family of lumichrome binding proteins. J Mol Biol. 357:842–857. doi: 10.1016/j.jmb.2005.12.072
  • Gu T. 2012. New understandings of biocorrosion mechanisms and their classifications. J Microbial Biochem Technol. 4:iii–ivi.
  • Hauser LJ, Land ML, Brown SD, Larimer F, Keller KL, Rapp-Giles BJ, Price MN, Lin M, Bruce DC, Detter JC, et al. 2011. Complete genome sequence and updated annotation of Desulfovibrio alaskensis G20. J Bacteriol. 193:4268–4269. doi: 10.1128/JB.05400-11
  • Huan T, Forsberg EM, Rinehart D, Johnson CH, Ivanisevic J, Paul Benton H, Fang M, Aisporna A, Hilmers B, Poole FL, et al. 2017. Systems biology guided by XCMS online metabolomics. Nat Methods. 14:461–462. doi: 10.1038/nmeth.4260
  • Huang Y, Zhou E, Jiang C, Jia R, Liu S, Xu D, Gu T, Wang F. 2018. Endogenous phenazine-1-carboxamide encoding gene phzh regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. Electrochem Comm. 94:9–13. doi: 10.1016/j.elecom.2018.07.019
  • Ivanisevic J, Zhu Z-J, Plate L, Tautenhahn R, Chen S, O’Brien PJ, Johnson CH, Marletta MA, Patti GJ, Siuzdak G. 2013. Toward omic-scale metabolite profiling: a dual separation–mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal Chem. 85:6876–6884. doi: 10.1021/ac401140h
  • Kannan P, Su SS, Mannan MS, Castaneda H, Vaddiraju S. 2018. A review of characterization and quantification tools for the microbiologically influenced corrosion in the oil and gas industry: current and future trends. Ind Eng Chem Res. 57:13895–13922. doi: 10.1021/acs.iecr.8b02211
  • Kato S. 2016. Microbial extracellular electron transfer and its relevance to iron corrosion. Microb Biotechnol. 9:141–148. doi: 10.1111/1751-7915.12340
  • Klonowoska A, Clark ME, Thieman SB, Giles BJ, Wall JD, Fields MW. 2008. Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth. Appl Microbiol Biotechnol. 78:1007–1016. doi: 10.1007/s00253-008-1381-x
  • Ksenzhek OS, Petrova SA. 1983. Electrochemical properties of flavins in aqueous solutions. J Electroanal Chem Interfacial Electrochem. 156:105–127. doi: 10.1016/S0022-0728(83)80661-5
  • Li H, Xu D, Li Y, Feng H, Liu Z, Li X, Gu T, Yang K. 2015. Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris. PLoS One. 10:e0136183. doi: 10.1371/journal.pone.0136183
  • Little BJ, Lee JS. 2007. Microbiologically influenced corrosion. New Jersey: John Wiley & Sons.
  • Li Y, Xu D, Chen C, Li X, Jia R, Zhang D, Sand W, Wang F, Gu T. 2018. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J Mat Sci Technol. 34:1713–1718. doi: 10.1016/j.jmst.2018.02.023
  • Lie TJ, Godchaux W, Leadbetter ER. 1996. Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl Environ Microbiol. 65:4611–4617.
  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. 2014. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA. 105:3968–3973.
  • Martin J. 2014. Biocorrosion of 1018 steel in sulfide rich marine environments - a correlation between strain and corrosion using electron backscatter diffraction. Thesis, Montana State University.
  • Mayhew SG. 1999. The effects of pH and semiquinone formation on the oxidation–reduction potentials of flavin mononucleotide: a reappraisal. Eur J Biochem. 265:698–702. doi: 10.1046/j.1432-1327.1999.00767.x
  • McCarty PL. 1971. Energetics and bacterial growth. In: Editors SD, Hunter JV, editors. Organic compounds in aquatic environments. Faust New York: Marcel Dekker, Inc.; p. 157–172.
  • Montenegro-Burke JR, Phommavongsay T, Aisporna AE, Huan T, Rinehart D, Forsberg E, Poole FL, Thorgersen MP, Adams MWW, Krantz G, et al. 2016. Smartphone analytics: mobilizing the lab into the cloud for omic-scale analyses. Anal Chem. 88:9753–9758., doi: 10.1021/acs.analchem.6b02676
  • Muramatsu H, Mihara H, Goto M, Miyahara I, Hirotsu K, Kurihara T, Esaki N. 2005. A new family of NAD(P)H-dependent oxidoreductases distinct from conventional Rossmann-fold proteins. J Biosci Bioeng. 99541–547. doi: 10.1263/jbb.99.541
  • Nealson KH, Saffarini D. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol. 48:311–343. doi: 10.1146/annurev.mi.48.100194.001523
  • Okamoto A, Hashimoto K, Nealson KH, Nakamura R. 2013. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci USA. 110:7856–7861. doi: 10.1073/pnas.1220823110
  • Okamoto A, Nakamura R, Nealson KH, Hashimoto K. 2014. Bound flavin model suggests similar electron-transfer mechanism in Shewanella and Geobacter. ChemElectroChem. 1:1808–1812.
  • Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. 2006. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 78:779–787. doi: 10.1021/ac051437y
  • Thauer RK, Stackebrandt E, Hamilton WA. 2007. Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria. In: LJ Barton WA Hamilton, editors. Sulphate-reducing bacteria: environmental and engineered systems. New York: Cambridge University Press; Chapter 1, p. 1–37.
  • Treadwell GE, Metzler DE. 1972. Photoconversion of riboflavin to lumichrome in plant tissues. Plant Physiol. 49:991–993. doi: 10.1104/pp.49.6.991
  • Venzlaff H, Enning D, Srinivasan J, Mayrhofer KJJ, Hassel AW, Widdel F, Stratmann M. 2013. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corr Sci. 66:88–96. doi: 10.1016/j.corsci.2012.09.006
  • Watanabe K, Manefield M, Lee M, Kouzuma A. 2009. Electron shuttles in biotechnology. Curr Opin Biotechnol. 20:633–641. doi: 10.1016/j.copbio.2009.09.006
  • Whitney WR. 1903. The corrosion of iron. J Am Chem Soc. 25:394–406. doi: 10.1021/ja02006a008
  • Xu D, Gu T. 2014. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int Biodeterior Biodegradation. 91:74–81. doi: 10.1016/j.ibiod.2014.03.014
  • Zhang P, Xu D, Li Y, Yang K, Gu T. 2015. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochem. 101:14–21. doi: 10.1016/j.bioelechem.2014.06.010
  • Zhou J, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou A, He Z, Van Nostrand JD, Hazen TC, Stahl DA, et al. 2011. How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol. 9:452–466. doi: 10.1038/nrmicro2575

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.