Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 3
343
Views
14
CrossRef citations to date
0
Altmetric
Articles

Antifungal evaluation of traditional herbal monomers and their potential for inducing cell wall remodeling in Candida albicans and Candida auris

, , , ORCID Icon, , , , & show all
Pages 319-331 | Received 16 Dec 2019, Accepted 18 Apr 2020, Published online: 15 May 2020

References

  • Arendrup MC, Patterson TF. 2017. Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis. 216:S445–S451. doi:10.1093/infdis/jix131
  • Arif T, Bhosale JD, Kumar N, Mandal TK, Bendre RS, Lavekar GS, Dabur R. 2009. Natural products: antifungal agents derived from plants. J Asian Nat Prod Res. 11:621–638. doi:10.1080/10286020902942350
  • Arikan-Akdagli S, Ghannoum M, Meis JF. 2018. Antifungal resistance: specific focus on multidrug resistance in Candida auris and secondary azole resistance in Aspergillus fumigatus. J Fungi (Basel). 4:129. doi:10.3390/jof4040129
  • Bang KH, Lee DW, Park HM, Rhee YH. 2000. Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde. Biosci Biotechnol Biochem. 64:1061–1063. doi:10.1271/bbb.64.1061
  • Chen T, Jackson JW, Tams RN, Davis SE, Sparer TE, Reynolds TB. 2019. Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway. PLoS Genet. 15:e1007892. doi:10.1371/journal.pgen.1007892
  • CLSI. 2008. Reference method for broth dilution antifungal susceptibility testing of yeasts-third edition: approved standard M27-A3. Wayne (PA): CLSI.
  • Cuéllar-Cruz M, López-Romero E, Villagómez-Castro JC, Ruiz-Baca E. 2012. Candida species: new insights into biofilm formation. Future Microbiol. 7:755–771. doi:10.2217/fmb.12.48
  • Da W, Shao J, Li Q, Shi G, Wang T, Wu D, Wang C. 2019. Physical interaction of sodium houttuyfonate with β-1,3-glucan evokes Candida albicans cell wall remodeling. Front Microbiol. 10:34. doi:10.3389/fmicb.2019.00034
  • de Oliveira HC, Monteiro MC, Rossi SA, Peman J, Ruiz-Gaitan A, Mendes-Giannini MJS, Mellado E, Zaragoza O. 2019. Identification of off-patent compounds that present antifungal activity against the emerging fungal pathogen Candida auris. Front Cell Infect Microbiol. 9:83. doi:10.3389/fcimb.2019.00083
  • Dekkerova J, Lopez-Ribot JL, Bujdakova H. 2019. Activity of anti-CR3-RP polyclonal antibody against biofilms formed by Candida auris, a multidrug-resistant emerging fungal pathogen. Eur J Clin Microbiol Infect Dis. 38:101–108. doi:10.1007/s10096-018-3400-x
  • Dominguez EG, Zarnowski R, Choy HL, Zhao M, Sanchez H, Nett JE, Andes DR. 2019. Conserved role for biofilm matrix polysaccharides in Candida auris drug resistance. mSphere. 4:e00680–18.
  • Dudiuk C, Berrio I, Leonardelli F, Morales-Lopez S, Theill L, Macedo D, Yesid-Rodriguez J, Salcedo S, Marin A, Gamarra S, et al. 2019. Antifungal activity and killing kinetics of anidulafungin, caspofungin and amphotericin B against Candida auris. J Antimicrob Chemother. 74:2295–2302. doi:10.1093/jac/dkz178
  • Ene IV, Adya AK, Wehmeier S, Brand AC, MacCallum DM, Gow NAR, Brown A. 2012. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol. 14:1319–1335. doi:10.1111/j.1462-5822.2012.01813.x
  • Erwig LP, Gow NA. 2016. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol. 14:163–176. doi:10.1038/nrmicro.2015.21
  • Galán-Díez M, Arana DM, Serrano-Gómez D, Kremer L, Casasnovas JM, Ortega M, Cuesta-Domínguez Á, Corbí AL, Pla J, Fernández-Ruiz E. 2010. Candida albicans β-glucan exposure is controlled by the fungal CEK1-mediated mitogen-activated protein kinase pathway that modulates immune responses triggered through dectin-1. Infect Immun. 78:1426–1436. doi:10.1128/IAI.00989-09
  • Gow NAR, Latge J-P, Munro CA. 2017. The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr. 5:FUNK-0035-2016.
  • Guirao-Abad JP, Sanchez-Fresneda R, Machado F, Arguelles JC, Martinez-Esparza M. 2018. Micafungin enhances the human macrophage response to Candida albicans through β-glucan exposure. Antimicrob Agents Chemother. 62:e02161–02117.
  • Hopke A, Brown AJP, Hall RA, Wheeler RT. 2018. Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends Microbiol. 26:284–295. doi:10.1016/j.tim.2018.01.007
  • Huang W, Duan Q, Li F, Shao J, Cheng H, Wu D. 2015. Sodium houttuyfonate and EDTA-Na2 in combination effectively inhibits Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans in vitro and in vivo. Bioorg Med Chem Lett. 25:142–147. doi:10.1016/j.bmcl.2014.10.072
  • Leventakos K, Ben-Ami R, Lewis RE, Kontoyiannis DP. 2009. Immunomodulating effects of antifungal therapy. Curr Fungal Infect Rep. 3:243–250. doi:10.1007/s12281-009-0034-6
  • Li D-D, Xu Y, Zhang D-Z, Quan H, Mylonakis E, Hu D-D, Li M-B, Zhao L-X, Zhu L-H, Wang Y, et al. 2013. Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother. 57:6016–6027. doi:10.1128/AAC.00499-13
  • Lima SL, Colombo AL, de Almeida Junior JN. 2019. Fungal cell wall: emerging antifungals and drug resistance. Front Microbiol. 10:2573–2573. doi:10.3389/fmicb.2019.02573
  • Lis M, Liu TT, Barker KS, Rogers PD, Bobek LA. 2010. Antimicrobial peptide MUC7 12-mer activates the calcium/calcineurin pathway in Candida albicans. FEMS Yeast Res. 10:579–586.
  • Lopes JP, Stylianou M, Backman E, Holmberg S, Jass J, Claesson R, Urban CF. 2018. Evasion of immune surveillance in low oxygen environments enhances Candida albicans virulence. mBio. 9:e02120–18.
  • Lu M, Li T, Wan J, Li X, Yuan L, Sun S. 2017. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int J Antimicrob Agents. 49:125–136. doi:10.1016/j.ijantimicag.2016.10.021
  • Martins N, Barros L, Henriques M, Silva S, Ferreira I. 2015. Activity of phenolic compounds from plant origin against Candida species. Ind Crops Prod. 74:648–670. doi:10.1016/j.indcrop.2015.05.067
  • McKenzie CGJ, Koser U, Lewis LE, Bain JM, Mora-Montes HM, Barker RN, Gow NAR, Erwig LP. 2010. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun. 78:1650–1658. doi:10.1128/IAI.00001-10
  • Morschhäuser J, Hopke A, Nicke N, Hidu EE, Degani G, Popolo L, Wheeler RT. 2016. Neutrophil attack triggers extracellular trap-dependent Candida cell wall remodeling and altered immune recognition. PLoS Pathog. 12:e1005644.
  • Munro CA, Selvaggini S, de Bruijn I, Walker L, Lenardon MD, Gerssen B, Milne S, Brown AJ, Gow NA. 2007. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol. 63:1399–1413. doi:10.1111/j.1365-2958.2007.05588.x
  • Navarro-Arias MJ, Hernandez-Chavez MJ, Garcia-Carnero LC, Amezcua-Hernandez DG, Lozoya-Perez NE, Estrada-Mata E, Martinez-Duncker I, Franco B, Mora-Montes HM. 2019. Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect Drug Resist. 12:783–794. doi:10.2147/IDR.S197531
  • Netea MG, Brown GD, Kullberg BJ, Gow NA. 2008. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 6:67–78. doi:10.1038/nrmicro1815
  • Odds F. 2003. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother. 52:1–1. doi:10.1093/jac/dkg301
  • Ooi LS, Li Y, Kam SL, Wang H, Wong EY, Ooi VE. 2006. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am J Chin Med. 34:511–522. doi:10.1142/S0192415X06004041
  • Park K, Kang K, Kim J, Adams D, Johng T, Paik Y. 1999. Differential inhibitory effects of protoberberines on sterol and chitin biosyntheses in Candida albicans. J Antimicrob Chemother. 43:667–674. doi:10.1093/jac/43.5.667
  • Park BRG, Kim T-H, Kim HR, Lee M-K. 2011. Comparative analysis of simulated candidemia using two different blood culture systems and the rapid identification of Candida albicans. Ann Clin Lab Sci. 41:251–256.
  • Poulain D. 2015. Candida albicans, plasticity and pathogenesis. Crit Rev Microbiol. 41:208–217. doi:10.3109/1040841X.2013.813904
  • Pradhan A, Avelar GM, Bain JM, Childers D, Pelletier C, Larcombe DE, Shekhova E, Netea MG, Brown GD, Erwig L, et al. 2019. Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat Commun. 10:5315–5315. doi:10.1038/s41467-019-13298-9
  • Pradhan A, Avelar GM, Bain JM, Childers DS, Larcombe DE, Netea MG, Shekhova E, Munro CA, Brown GD, Erwig LP, et al. 2018. Hypoxia promotes immune evasion by triggering β-glucan masking on the Candida albicans cell surface via mitochondrial and cAMP-protein kinase A signaling. mBio. 9:e01318–01318.
  • Quan H, Cao YY, Xu Z, Zhao JX, Gao PH, Qin XF, Jiang YY. 2006. Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob Agents Chemother. 50:1096–1099. doi:10.1128/AAC.50.3.1096-1099.2006
  • Robbins N, Caplan T, Cowen LE. 2017. Molecular evolution of antifungal drug resistance. Annual Rev Microbiol. 71:753–775. doi:10.1146/annurev-micro-030117-020345
  • Rutala WA, Kanamori H, Gergen MF, Sickbert-Bennett EE, Weber DJ. 2019. Susceptibility of Candida auris and Candida albicans to 21 germicides used in healthcare facilities. Infect Control Hosp Epidemiol. 40:380–382. doi:10.1017/ice.2019.1
  • Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. 2009. Candida auris sp. nov, a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 53:41–44. doi:10.1111/j.1348-0421.2008.00083.x
  • Sekita Y, Murakami K, Yumoto H, Hirao K, Amoh T, Fujiwara N, Hirota K, Fujii H, Matsuo T, Miyake Y, et al. 2017. Antibiofilm and anti-inflammatory activities of Houttuynia cordata decoction for oral care. Evid Based Complement Alternat Med. 2017:1–10. doi:10.1155/2017/2850947
  • Shao J, Cui Y, Zhang M, Wang T, Wu D, Wang C. 2017. Synergistic in vitro activity of sodium houttuyfonate with fluconazole against clinical Candida albicans strains under planktonic growing conditions. Pharm Biol. 55:355–359. doi:10.1080/13880209.2016.1237977
  • Sharma Y, Rastogi SK, Perwez A, Rizvi MA, Manzoor N. 2020. β-citronellol alters cell surface properties of Candida albicans to influence pathogenicity related traits. Med Mycol. 58:93–106. doi:10.1093/mmy/myz009
  • Sherrington SL, Sorsby E, Mahtey N, Kumwenda P, Lenardon MD, Brown I, Ballou ER, MacCallum DM, Hall RA. 2017. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog. 13:e1006403. doi:10.1371/journal.ppat.1006403
  • Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, Friedrich O, Grömer T, Kornhuber J, Lang R, et al. 2016. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci Rep. 6:32228. doi:10.1038/srep32228
  • Sun LM, Liao K, Liang S, Yu PH, Wang DY. 2015. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. J Appl Microbiol. 118:826–838. doi:10.1111/jam.12737
  • Taguchi Y, Hasumi Y, Abe S, Nishiyama Y. 2013. The effect of cinnamaldehyde on the growth and the morphology of Candida albicans. Med Mol Morphol. 46:8–13. doi:10.1007/s00795-012-0001-0
  • Volleková A, Košt'álová D, Kettmann V, Tóth J. 2003. Antifungal activity of Mahonia aquifolium extract and its major protoberberine alkaloids. Phytother Res. 17:834–837. doi:10.1002/ptr.1256
  • Wagner H, Ulrich-Merzenich G. 2009. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine. 16:97–110. doi:10.1016/j.phymed.2008.12.018
  • Walker LA, Gow NAR, Munro CA. 2013. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother. 57:146–154. doi:10.1128/AAC.01486-12
  • Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA. 2008. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog. 4:e1000040. doi:10.1371/journal.ppat.1000040
  • Wang T, Shao J, Da W, Li Q, Shi G, Wu D, Wang C. 2018. Strong synergism of palmatine and fluconazole/itraconazole against planktonic and biofilm cells of Candida species and efflux-associated antifungal mechanism. Front Microbiol. 9:2892. doi:10.3389/fmicb.2018.02892
  • Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. 2019. Coptidis rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm Biol. 57:193–225. doi:10.1080/13880209.2019.1577466
  • Wheeler RT, Fink GR. 2006. A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog. 2:e35. doi:10.1371/journal.ppat.0020035
  • Wheeler RT, Kombe D, Agarwala SD, Fink GR. 2008. Dynamic, morphotype-specific Candida albicans β-glucan exposure during infection and drug treatment. PLoS Pathog. 4:e1000227. doi:10.1371/journal.ppat.1000227
  • Wiederhold NP, Lockhart SR, Najvar LK, Berkow EL, Jaramillo R, Olivo M, Garvey EP, Yates CM, Schotzinger RJ, Catano G, et al. 2018. The fungal Cyp51-specific inhibitor VT-1598 demonstrates in vitro and in vivo activity against Candida auris. Antimicrob Agents Chemother. 63:e02233–18.
  • Yang Q, Gao L, Tao M, Chen Z, Yang X, Cao Y. 2016. Transcriptomics analysis of Candida albicans treated with Huanglian Jiedu decoction using RNA-seq. Evid Based Compl Alternat Med. 2016:3198249.
  • Yang L, Wu H, Qiu W, Guo L, Du X, Yu Q, Gao J, Luo S. 2018. Pulsatilla decoction inhibits Candida albicans proliferation and adhesion in a mouse model of vulvovaginal candidiasis via the Dectin-1 signaling pathway. J Ethnopharmacol. 223:51–62. doi:10.1016/j.jep.2018.05.018
  • Yen TB, Chang ST. 2008. Synergistic effects of cinnamaldehyde in combination with eugenol against wood decay fungi. Bioresour Technol. 99:232–236. doi:10.1016/j.biortech.2006.11.022
  • Zavrel M, White TC. 2015. Medically important fungi respond to azole drugs: an update. Future Microbiol. 10:1355–1373. doi:10.2217/FMB.15.47

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.