Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 6
251
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Destruction of Pseudomonas aeruginosa pre-formed biofilms by cationic polymer micelles bearing silver nanoparticles

, , , , , & ORCID Icon show all
Pages 679-695 | Received 27 Nov 2019, Accepted 14 Jul 2020, Published online: 03 Aug 2020

References

  • Adragna NC, Alla PK, Pavel-Sizmore IE, Paluri ASL, Yaklic J, Lauf PK. 2019. Assessment of silver-nanoparticles-induced erythrocyte cytotoxicity through ion transport studies. Cell Physiol Biochem. 53:532–549. doi:10.33594/000000156
  • Atkin L, Edwards-Jones V, Guttormsen K, Morris L. 2018. Biofilm-based wound care: how to cleanse, debride and manage chronic wounds. Wounds (UK). 14:10–16.
  • Barras F, Aussel L, Ezraty B. 2018. Silver and antibiotic, new facts to an old story. Antibiotica (Basel). 7:79. doi:10.3390/antibiotics7030079
  • Benoit DSW, Sims KR, Jr., Fraser D. 2019. Nanoparticles for oral biofilm treatments. ACS Nano. 13:4869–4875. doi:10.1021/acsnano.9b02816
  • Bjarnsholt T, Buhlin K, Dufrêne YF, Gomelsky M, Moroni A, Ramstedt M, Rumbaugh KP, Schulte T, Sun L, Åkerlund B, et al. 2018. Biofilm formation - what we can learn from recent developments. J Intern Med. 284:332–345. doi:10.1111/joim.12782
  • Borisova D, Jordanova V, Stoitsova S, Paunova-Krasteva T. 2019. Impact of growth conditions on biofilm formation by model Gram-negative and Gram-positive bacterial strains. Acta Microbiol. Bulgarica. 35:60–65.
  • Borisova D, Haladjova E, Kyulavska M, Petrov P, Pispas S, Stoitsova S, Paunova-Krasteva T. 2018. Application of cationic polymer micelles for the dispersal of bacterial biofilms. Eng Life Sci. 18:943–948. doi:10.1002/elsc.201800040
  • Chen J, Wang F, Liu Q, Du J. 2014. Antibacterial polymeric nanostructures for biomedical applications. Chem Commun (Camb). 50:14482–14493. doi:10.1039/c4cc03001j
  • Chen M, Wei J, Xie S, Tao X, Zhang Z, Ran P, Li X. 2019. Bacterial biofilm destruction by size/surface charge-adaptive micelles. Nanoscale. 11:1410–1422. doi:10.1039/c8nr05575k
  • Cullen L, Weiser R, Olszak T, Maldonado RF, Moreira AS, Slachmuylders L, Brackman G, Paunova-Krasteva TS, Zarnowiec P, Czerwonka G, et al. 2015. Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains. Microbiology (Reading, Engl). 161:1961–1977. doi:10.1099/mic.0.000155
  • Das T, Manoharan A, Whiteley G, Glasbey T, Manosa J. 2020. Pseudomonas aeruginosa biofilms and infections: roles of extracellular molecules. In Yadav M, and Singh B, editors. New and future developments in microbial biotechnology and bioengineering: microbial biofilms. Cambridge, MA: Elsevier; p. 29–46.
  • De Soyza A, Hall A, Mahenthiralingam E, Drevinek P, Kaca W, Drulis-Kawa Z, Stoitsova S, Toth V, Coenye T, Zlosnik J, et al. 2013. Developing an international Pseudomonas aeruginosa reference panel. Microbiologyopen. 2:1010–1023. doi:10.1002/mbo3.141
  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M. 2015. Silver nanoparticles as potential antibacterial agents. Molecules. 20:8856–8874. doi:10.3390/molecules20058856
  • Francolini I, Donelli G, Crisante F, Taresco V, Piozzi A. 2015. Antimicrobial polymers for anti-biofilm medical devices: state-of-art and perspectives. In: Donelli G, editor. Biofilm-based healthcare-associated infections: Volume II, Advances in experimental medicine and biology. Cham, Switzerland: Springer International Publishing; p. 93–117.
  • Franklin MJ, Nivens DE, Weadge JT, Howell PL. 2011. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, pel, and psl. Front Microbiol. 2:167. doi:10.3389/fmicb.2011.00167
  • Frockton TR, Schnorbus L, Araujo A, Adams J, Hammel M, Perez LJ. 2019. Inhibition of Pseudomonas aeruginosa biofilm formation with surface modified polymeric nanoparticles. Pathogens. 8:E55. doi:10.3390/pathogens8020055
  • Gjerde H, Mishra A. 2018. Contact lens-related Pseudomonas aeruginosa keratitis in a 49-year-old woman. CMAJ. 190:E54. doi:10.1503/cmaj.171165
  • Guo J, Qin S, Wei Y, Liu S, Peng H, Li Q, Luo L, Lv M. 2019. Silver nanoparticles exert concentration-dependent influences on biofilm development and architecture. Cell Prolif. 52:e12616. doi:10.1111/cpr.12616
  • Haladjova E, Kyulavska M, Doumanov J, Topouzova-Hristova T, Petrov P. 2017. Polymeric vehicles for transport and delivery of DNA via cationic micelle template method. Colloid Polym Sci. 295:2197–2205. doi:10.1007/s00396-017-4193-7
  • Huang X, Xiao Y, Zhang W, Lang M. 2012. In-situ formation of silver nanoparticles stabilized by amphiphilic star-shaped copolymer and their catalytic application. Appl Surf Sci. 258:2655–2660. doi:10.1016/j.apsusc.2011.10.113
  • Ishida T. 2018. Antibacterial mechanism of Ag+ ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages. MOJ Toxicol. 4:345–350.
  • Johani K, Malone M, Jensen SO, Dickson HG, Gosbell IB, Hu H, Yang Q, Schultz G, Vickery K. 2018. Evaluation of short exposure times of antimicrobial wound solutions against microbial biofilms: from in vitro to in vivo. J Antimicrob Chemother. 73:494–502. doi:10.1093/jac/dkx391
  • Joseph R, Naugolny A, Feldman M, Herzog IM, Fridman M, Cohen Y. 2016. Cationic pillararenes potently inhibit biofilm formation without affecting bacterial growth and viability. J Am Chem Soc. 138:754–757. doi:10.1021/jacs.5b11834
  • Kackar S, Suman E, Kotian MS. 2017. Bacterial and fungal biofilm formation on contact lenses and their susceptibility to lens care solutions. Ind J Med Microbiol. 35:80–84. doi:10.4103/ijmm.IJMM_16_273
  • Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, Chivu A, de Fatima Pina M. 2019. Antimicrobial polymers: the potential replacement of existing antibiotics? IJMS. 20:2747. doi:10.3390/ijms20112747
  • Kamenova K, Haladjova E, Grancharov G, Kyulavska M, Tzankova V, Aluani D, Yoncheva K, Pispas S, Petrov P. 2018. Co-assembly of block copolymers as a tool for developing novel micellar carriers of insulin for controlled drug delivery. Eur Polym J. 104:1–9. doi:10.1016/j.eurpolymj.2018.04.039
  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. 2017. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 15:740–755. doi:10.1038/nrmicro.2017.99
  • Lee K, Yoon SS. 2017. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J Microbiol Biotechnol. 27:1053–1064. doi:10.4014/jmb.1611.11056
  • Li X, Wu B, Chen H, Nan K, Jin Y, Sun L, Wang B. 2018. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem B. 6:4274–4292. doi:10.1039/c8tb01245h
  • Lin W, Huang K, Li Y, Qin Y, Xiong D, Ling J, Yi G, Tang Z, Lin J, Huang Y, et al. 2019. Facile in situ preparation and in vitro antibacterial activity of PDMAEMA-based silver-bearing copolymer micelles. Nanoscale Res Lett. 14:256. doi:10.1186/s11671-019-3074-z
  • Liu L, Li JH, Zi SF, Liu FR, Deng C, Ao X, Zhang P. 2019. AgNP combined with quorum sensing inhibitor increased the antibiofilm effect on Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 103:6195–6204. doi:10.1007/s00253-019-09905-w
  • Liu Y, Ren Y, Li Y, Su L, Zhang Y, Huang F, Liu J, Liu J, van Kooten TG, An Y, et al. 2018. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomater. 79:331–343. doi:10.1016/j.actbio.2018.08.038
  • Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ. 2019. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev. 48:428–446. doi:10.1039/c7cs00807d
  • Maiden MM, Hunt AMA, Zachos MP, Gibson JA, Hurwitz ME, Mulks MH, Waters CM. 2018. Triclosan is an aminoglycoside adjuvantfor eradication of Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 62:e00146. Acta Biomed. 88:409–413. doi:10.1128/AAC.00146-18
  • Mancini S, Cuomo R, Poggialini M, D’Aniello C, Botta G. 2018. Autolytic debridement and management of bacterial load with an occlusive hydroactive deressing impregnated with polyhexamethylene biguanide. Acta Biomed. 88:409–413. doi:10.23750/abm.v88i4.5802
  • Müller L, Murgia X, Siebenbürger L, Börger C, Schwarzkopf K, Sewald K, Häussler S, Braun A, Lehr C-M, Hittinger M, et al. 2018. Human airway mucus alters susceptibility of Pseudomonas aeruginosa biofilms to tobramycin, but not colistin. J Antimicrob Chemother. 73:2762–2769. doi:10.1093/jac/dky241
  • Nafee N, Forier K, Braeckmans K, Schneider M. 2018. Mucus-penetrating solid lipid nanoparticles for the treatment of cystic fibrosis: proof of concept, challenges and pitfalls. Eur J Pharm Biopharm. 124:125–137. doi:10.1016/j.ejpb.2017.12.017
  • Nederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, et al. 2011. Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem. 3:409–414. doi:10.1038/nchem.1012
  • Negut I, Grumezescu V, Grumezescu AM. 2018. Treatment strategies for infected wounds. Molecules. 23:2392. doi:10.3390/molecules23092392
  • Paladini F, Pollini M. 2019. Antimicrobial silver nanoparticles for wound healing application: progress and future trends. Materials (Basel). 12:2540. doi:10.3390/ma12162540
  • Pettit RK, Weber CA, Kean MJ, Hoffmann H, Pettit GR, Tan R, Franks KS, Horton ML. 2005. Microplate alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. AAC. 49:2612–2617. doi:10.1128/AAC.49.7.2612-2617.2005
  • Powell LC, Pritchard MF, Ferguson EL, Powell KA, Patel SU, Rye PD, Sakellakou S-M, Buurma NJ, Brilliant CD, Copping JM, et al. 2018. Targeted disruption of extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. Npj Biofilms Microbiomes. 4:13. doi:10.1038/s41522-018-0056-3
  • Quan K, Zhang Z, Chen H, Ren X, Ren Y, Peterson BW, van der Mei HC, Busscher HJ. 2019. Artificial channels in an infectious biofilm created by magnetic nanoparticles enhanced bacterial killing by antibiotics. Small. 15:e1902313. doi:10.1002/smll.201902313
  • Rajivgandhi G, Maruthupandy M, Muneeswaran T, Anand M, Quero F, Manoharan N, Li WL. 2019. Biosynthesized silver nanoparticles for inhibition of antibacterial resistance and biofilm formation of methicillin-resistant coagulase negative staphylococci. Bioorg Chem. 89:103008. doi:10.1016/j.bioorg.2019.103008
  • Randall CP, Oyama LB, Bostock JM, Chopra I, O'Neill AJ. 2013. The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J Antimicrob Chemother. 68:131–138. doi:10.1093/jac/dks372
  • Ren Y, Wang C, Chen Z, Allan E, van der Mei HC, Busscher HJ. 2018. Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing. FEMS Microbiol Rev. 42:259–272. doi:10.1093/femsre/fuy001
  • Riau AK, Aung TT, Setiawan M, Yang L, Yam GHF, Beuermanu RW, Venkatraman SS, Mehta JS. 2019. Surface immobilization of nano-silver on polymeric medical devices to prevent bacterial biofilm formation. Pathogens. 8:93. doi:10.3390/pathogens8030093
  • Roizman D, Vidaillac C, Givskov M, Yang L. 2017. In vitro evaluation of biofilm dispersalas a therapeutic strategy to restore antimicrobial efficacy. Antimicrob Agents Chemother. 61:e01088. doi:10.1128/AAC.01088-17
  • Roy R, Tiwari M, Donelli G, Tiwari V. 2018. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 9:522–554. doi:10.1080/21505594.2017.1313372
  • Ruffin M, Brochiero E. 2019. Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues. Front Cell Infect Microbiol. 9:182. doi:10.3389/fcimb.2019.00182
  • Salman M, Rizwana R, Khan H, Munir I, Hamayun M, Iqbal A, Rehman A, Amin K, Ahmed G, Khan M, et al. 2019. Synergistic effect of silver nanoparticles and polymyxin B against biofilm produced by Pseudomonas aeruginosa isolates of pus samples in vitro. Artif Cells Nanomed Biotechnol. 47:2465–2472. doi:10.1080/21691401.2019.1626864
  • Shah S, Gaikwad S, Nagar S, Kulshrestha S, Vaidya V, Nawani N, Pawar S. 2019. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling. 35:34–49. doi:10.1080/08927014.2018.1563686
  • Simões M, Simões LC, Machado I, Pereira MO, Vieira MJ. 2006. Control of flow-generated biofilms with surfactants - evidence of resistance and recovery. Food Bioprod Proc. 84:338–345. doi:10.1205/fbp06022
  • Singh N, Paknikar UM, Rajwade J. 2019. RNA-sequencing reveals a multitude of effects of silver nanoparticles on Pseudominas aeruginosa biofilms. Environ Sci Nano. 6:1812–1828. doi:10.1039/C8EN01286E
  • Singh BN, Prateeksha Upreti DK, Singh BR, Defoirdt T, Gupta VK, De Souza AO, Singh HB, Barreira JC, Ferreira IC. 2017. Bactericidal, quorum quenching and ani-biofilm nanofactories: a new niche for nanotechnologies. Crit Rev Biotechnol. 37:525–540. doi:10.1080/07388551.2016.1199010
  • Singh N, Romero M, Travanut A, Monteiro PF, Jordana-Lluch E, Hardie KR, Williams P, Alexander MR, Alexander C. 2019. Dual bioresponsive antibiotic and quorum sensing inhibitor combination nanoparticles for treatment of Pseudomonas aeruginosa biofilms in vitro and ex vivo. Biomater Sci. 7:4099–4111. doi:10.1039/c9bm00773c
  • Sønderholm M, Bjarnsholt T, Alhede M, Kolpen M, Jensen PØ, Kühl M, Kragh KN. 2017. The consequences of being in an infectious biofilm: microenvironmental conditions governing antibiotic tolerance. IJMS. 18:2688. doi:10.3390/ijms18122688
  • Soto SM, Smithson A, Horcajada JP, Martinez JA, Mensa JP, Vila J. 2006. Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli. Clin Microbiol Infect. 12:1034–1036. doi:10.1111/j.1469-0691.2006.01543.x
  • Tahrioui A, Duchesne R, Bouffartigues E, Rodrigues S, Maillot O, Tortuel D, Hardouin J, Taupin L, Groleau M-C, Dufour A, et al. 2019. Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation. NPJ Biofilms Microbiomes. 5:15. doi:10.1038/s41522-019-0088-3
  • Tambosi R, Liotenberg S, Bourbon ML, Steunou AS, Babot M, Durand A, Kebaili N, Ouchane S. 2018. Silver and copper acute effects on membrane proteins and impact on photosynthetic and respiratory complexes in bacteria. mBio. 9:e01535. doi:10.1128/mBio.01535-18
  • Tierlinck E, Samal SK, Coenye T, Braeckmans K. 2017. Penetrating the bacterial biofilm: challenges for antimicrobial treatment. In: Boukherroub R, Szunerits S, Drider D, editors. Functionalized nanomaterials for the management of microbial infections. Cambridge, MA: Elsevier; p. 49–76.
  • Tyldesley HC, Salisbury A-M, Chen R, Mullin M, Percival SL. 2019. Surfactants and their role in biofilm management in chronic wounds. Wounds Int. 10:20–24.
  • Tzankova V, Gorinova C, Kondeva-Burdina M, Simeonova R, Philipov S, Konstantinov S, Petrov P, Galabov D, Yoncheva K. 2016. In vitro and in vivo toxicity evaluation of cationic PDMAEMA-PCL-PDMAEMA micelles as a carrier of curcumin. Food Chem Toxicol. 97:1–10. doi:10.1016/j.fct.2016.08.026
  • Vasudevan S, Prabhune AA. 2018. Photophysical studies on curcumin-sophorolipid nanostructures: applications in quorum quenching and imaging. R Soc Open Sci. 5:170865. doi:10.1098/rsos.170865
  • Weed MC, Rogers GM, Kitzmann AS, Goins KM, Wagoner MD. 2013. Vision loss after contact lens-related Pseudomonas keratitis. EyeRounds.org. Available from: http://www.EyeRounds.org/cases/171-pseudomonas-keratitis.htm.
  • Wu YT, Zhu LS, Tam KP, Evans DJ, Fleiszig SM. 2015. Pseudomonas aeruginosa survival at posterior contact lens surfaces after daily wear. Optom Vis Sci. 92:659–664. doi:10.1097/OPX.0000000000000597
  • Yoncheva K, Kamenova K, Perperieva T, Hadjimitova V, Donchev P, Kaloyanov K, Konstantinov S, Kondeva-Burdina M, Tzankova V, Petrov P. 2015. Cationic triblock copolymer micelles enhance antioxidant activity, intracellular uptake and cytotoxicity of curcumin. Int J Pharm. 490:298–307. doi:10.1016/j.ijpharm.2015.05.057
  • Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG, Zhong Z. 2010. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA Triblock Copolymers. Biomat. 31:2408–2416. doi:10.1016/j.biomaterials.2009.11.077
  • Zimmerman AB, Nixon AD, Rueff EM. 2016. Contact lens associated microbial keratitis: practical considerations for the optometrist. Clin Optom (Auckl). 29:1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.