Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 6
439
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Effect of arginine on microorganisms involved in dental caries: a systematic literature review of in vitro studies

, , , , & ORCID Icon
Pages 696-709 | Received 06 Mar 2020, Accepted 25 Jul 2020, Published online: 04 Aug 2020

References

  • Agnello M, Cen L, Tran NC, Shi W, McLean JS, He X. 2017. Arginine improves pH homeostasis via metabolism and microbiome modulation. J Dent Res. 96:924–930. doi:10.1177/0022034517707512
  • Albaugh VL, Pinzon-Guzman C, Barbul A. 2017. Arginine-Dual roles as an onconutrient and immunonutrient. J Surg Oncol. 115:273–280. doi:10.1002/jso.24490
  • Angker L, Swain MV, Wong L, Sissons C. 2011. The effects of fluoride and mineralising treatments on plaque microcosm Ca, P and F, pH responses and cariogenicity. N Z Dent J. 107:12–18.
  • Ástvaldsdóttir Á, Naimi-Akbar A, Davidson T, Brolund A, Lintamo L, Attergren Granath A, Tranaeus S, Östlund P. 2016. Arginine and caries prevention: a systematic review. Caries Res. 50:383–393. doi:10.1159/000446249
  • Berto LA, Lauener A, Carvalho TS, Lussi A, Eick S. 2019. In vitro effects of arginine-containing toothpastes on cariogenic biofilms. Oral Health Prev Dent. 17:375–383. doi:10.3290/j.ohpd.a42684
  • Bijle MNA, Ekambaram M, Lo ECM, Yiu CKY. 2019. The combined antimicrobial effect of arginine and fluoride toothpaste. Sci Rep. 9:8405doi:10.1038/s41598-019-44612-6
  • Bohrer TC, Fontana PE, Lenzi TL, Soares FZM, Rocha RO. 2018. Can endodontic irrigating solutions influence the bond strength of adhesives to coronal dental Substrates? A systematic review and meta-analysis of in vitro studies. J Adhes Dent. 20:481–494. doi:10.3290/j.jad.a41633
  • Bowen WH, Burne RA, Wu H, Koo H. 2018. Oral biofilms: pathogens, matrix, and polymicrobial interactions in Microenvironments. Trends Microbiol. 26:229–242. doi:10.1016/j.tim.2017.09.008
  • Burne RA, Marquis RE. 2000. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett. 193:1–6. doi:10.1111/j.1574-6968.2000.tb09393.x
  • Chakraborty B, Burne RA. 2017. Effects of arginine on Streptococcus mutans growth, virulence gene expression, and stress tolerance. Appl Environ Microbiol. 83(15):e00496–17. doi:10.1128/AEM.00496-17
  • Cury JA, Tenuta LM. 2009. Enamel remineralization: controlling the caries disease or treating early caries lesions? Braz Oral Res. 23:23–30. doi:10.1590/S1806-83242009000500005
  • Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, Lakshmanan A, Wade WG. 2010. The human oral microbiome. J Bacteriol. 192:5002–5017. doi:10.1128/JB.00542-10
  • Durieux N, Vandenput S, Pasleau F. 2013. OCEBM levels of evidence system. Rev Med Liege. 68:644–649.
  • Fejerskov O. 1997. Concepts of dental caries and their consequences for understanding the disease. Community Dent Oral Epidemiol. 25:5–12. doi:10.1111/j.1600-0528.1997.tb00894.x
  • Fernández CE, Tenuta LMA, Cury JA. 2016. Validation of a cariogenic biofilm model to evaluate the effect of fluoride on enamel and root dentine demineralization. PloS One. 11:e0146478. doi:10.1371/journal.pone.0146478
  • Fu D, Pei D, Huang C, Liu Y, Du X, Sun H. 2013. Effect of desensitising paste containing 8% arginine and calcium carbonate on biofilm formation of Streptococcus mutans in vitro. J Dent. 41:619–627. doi:10.1016/j.jdent.2013.04.013
  • Geraldeli S, Soares EF, Alvarez AJ, Farivar T, Shields RC, Sinhoreti MAC, Nascimento MM. 2017. A new arginine-based dental adhesive system: formulation, mechanical and anti-caries properties. J Dent. 63:72–80. doi:10.1016/j.jdent.2017.05.024
  • He J, Hwang G, Liu Y, Gao L, Kilpatrick-Liverman L, Santarpia P, Zhou X, Koo H. 2016. L-arginine modifies the exopolysaccharide matrix and thwarts Streptococcus mutans outgrowth within mixed-species oral biofilms. J Bacteriol. 198:2651–2661. doi:10.1128/JB.00021-16
  • Higgins J, Green S. 2011. Cochrane handbook for systematic review of interventions version 20 5.1.0 11. The Cochrane Collaboration.http://handbook.cochrane.org.
  • Hoogenkamp MA, ten Cate JM. 2014. Determination of arginine catabolism by salivary pellet. MethodsX. 1:1–5. doi:10.1016/j.mex.2014.01.001
  • Huang X, Exterkate RA, ten Cate JM. 2012. Factors associated with alkali production from arginine in dental biofilms. J Dent Res. 91:1130–1134. doi:10.1177/0022034512461652
  • Huang X, Schulte RM, Burne RA, Nascimento MM. 2015. Characterization of the arginolytic microflora provides insights into ph homeostasis in human oral biofilms. Caries Res. 49:165–176. doi:10.1159/000365296
  • Huang X, Zhang K, Deng M, Exterkate RAM, Liu C, Zhou X, Cheng L, ten Cate JM. 2017. Effect of arginine on the growth and biofilm formation of oral bacteria. Arch Oral Biol. 82:256–262. doi:10.1016/j.archoralbio.2017.06.026
  • Jakubovics NS, Robinson JC, Samarian DS, Kolderman E, Yassin SA, Bettampadi D, Bashton M, Rickard AH. 2015. Critical roles of arginine in growth and biofilm development by Streptococcus gordonii. Mol Microbiol. 97:281–300. doi:10.1111/mmi.13023
  • Kolderman E, Bettampadi D, Samarian D, Dowd SE, Foxman B, Jakubovics NS, Rickard AH. 2015. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva. PLoS One. 10:e0121835. doi:10.1371/journal.pone.0121835
  • Koo H, Falsetta ML, Klein MI. 2013. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res. 92:1065–1073. doi:10.1177/0022034513504218
  • Koo H, Yamada KM. 2016. Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments. Curr Opin Cell Biol. 42:102–112. doi:10.1016/j.ceb.2016.05.005
  • Koopman JE, Röling WFM, Buijs MJ, Sissons CH, ten Cate JM, Keijser BJF, Crielaard W, Zaura E. 2015. Stability and resilience of oral microcosms toward acidification and Candida outgrowth by arginine supplementation. Microb Ecol. 69:422–433. doi:10.1007/s00248-014-0535-x
  • Ledder RG, Mistry H, Sreenivasan PK, Humphreys G, McBain AJ. 2017. Arginine exposure decreases acidogenesis in long-term oral biofilm microcosms. mSphere. 2(4):e00295-17. doi:10.1128/mSphere.00295-17
  • Li Y, Carrera C, Chen R, Li J, Lenton P, Rudney JD, Jones RS, Aparicio C, Fok A. 2014. Degradation in the dentin-composite interface subjected to multi-species biofilm challenges. Acta Biomater. 10:375–383. doi:10.1016/j.actbio.2013.08.034
  • Li J, Huang Z, Mei L, Li G, Li H. 2015. Anti-caries effect of arginine-containing formulations in vivo: a systematic review and meta-analysis. Caries Res. 49:606–617. doi:10.1159/000435894
  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D. 2009. The PRISMA statement for reporting systematic reviews and meta-analysis of studies that evaluate health care intervetions: explanation and elaboration. PLoS Med. 6:e1000100. doi:10.1371/journal.pmed.1000100
  • Liu Y, Nascimento M, Burne RA. 2012. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int J Oral Sci. 4:135–140. doi:10.1038/ijos.2012.54
  • Maske TT, Brauner KV, Nakanishi L, Arthur RA, van de Sande SH, Cenci MS. 2016. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies. Biofouling. 32:339–348. doi:10.1080/08927014.2015.1130824
  • Maske TT, van de Sande SH, Arthur RA, Huysmans M, Cenci MS. 2017. In vitro biofilm models to study dental caries: a systematic review. Biofouling. 33:661–675. doi:10.1080/08927014.2017.1354248
  • Marsh PD. 2015. Dental plaque as a biofilm and a microbial community–implications for health and disease. BMC Oral Health. 6(Suppl 1):S14. doi:10.1186/1472-6831-6-S1-S14
  • McBain AJ. 2009. Chapter 4: In vitro biofilm models: an overview. Adv Appl Microbiol. 69:99–132. doi:10.1016/S0065-2164(09)69004-3
  • May-Lei M, Chun-Hung C, Chin-Man LE, Lakshman-Perera S. 2013. Preventing root caries development under oral biofilm challenge in an artificial mouth. Med Oral. 18:e557. doi:10.4317/medoral.18768
  • Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. 2005. The global burden of oral diseases and risks to oral health. Bull Word Health Organ. 83:661–669.
  • Pinto-Sarmento TC, Abreu MH, Gomes MC, Costa EM, Martins CC, Granville-Garcia AF, Paiva SM. 2016. Determinant factors of untreated dental caries and lesion activity in preschool children using ICDAS. PloS One. 11:e0150116. doi:10.1371/journal.pone.0150116
  • Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A. 2017. Dental caries. Nat Rev Dis Primers. 3:25. doi:10.1038/nrdp.2017.30
  • Rudney JD, Chen R, Lenton P, Li J, Li Y, Jones RS, Reilly C, Fok AS, Aparicio C. 2012. A reproducible oral microcosm biofilm model for testing dental materials. J Appl Microbiol. 113:1540–1553. doi:10.1111/j.1365-2672.2012.05439.x
  • Sharma S, Lavender S, Woo J, Guo L, Shi W, Kilpatrick-Liverman L, Gimzewski JK. 2014. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy. Microbiology (Reading, Engl). 160:1466–1473. doi:10.1099/mic.0.075267-0
  • Signori C, van de Sande FH, Maske TT, de Oliveira EF, Cenci MS. 2016. Influence of the inoculum source on the cariogenicity of in vitro microcosm Biofilms. Caries Res. 50:97–103. doi:10.1159/000443537
  • Sirin Karaarslan E, Aytaç F, Çadirci BH, Ağaccioğlu M, Taştan E, Yilmaz G, Özkoçak BBC. 2018. Evaluation of the effects of different remineralizing agents on Streptococcus mutans biofilm adhesion. J Adhes Sci Technol. 32:2617–2630. doi:10.1080/01694243.2018.1499319
  • Tada A, Nakayama-Imaohji H, Yamasaki H, Hasibul K, Yoneda S, Uchida K, Nariya H, Suzuki M, Miyake M, Kuwahara T. 2016. Cleansing effect of acidic L-arginine on human oral biofilm. BMC Oral Health. 16:40. doi:10.1186/s12903-016-0194-z
  • Takahashi N, Nyvad B. 2008. Caries ecology revisited: microbial dynamics and the caries process. Caries Res. 42:409–418. doi:10.1159/000159604
  • Takahashi N, Nyvad B. 2011. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 90:294–303. doi:10.1177/0022034510379602
  • Wade WG. 2013. The oral microbiome in health and disease. Pharmacol Res. 69:137–143. doi:10.1016/j.phrs.2012.11.006
  • Zheng X, Cheng X, Wang L, Qiu W, Wang S, Zhou Y, Li M, Li Y, Cheng L, Li J, et al. 2015. Combinatorial effects of arginine and fluoride on oral bacteria. J Dent Res. 94:344–353. doi:10.1177/0022034514561259
  • Zheng X, He J, Wang L, Zhou S, Peng X, Huang S, Zheng L, Cheng L, Hao Y, Li J, et al. 2017. Ecological effect of arginine on oral microbiota. Sci Rep. 7:7206. doi:10.1038/s41598-017-07042-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.