Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 6
490
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Synergistic antibacterial and anti-biofilm activity of nisin like bacteriocin with curcumin and cinnamaldehyde against ESBL and MBL producing clinical strains

, , , &
Pages 710-724 | Received 18 Oct 2019, Accepted 28 Jul 2020, Published online: 09 Aug 2020

References

  • Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. 2016. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol. 100:2939–2951. doi:10.1007/s00253-016-7343-9
  • Amalaradjou MAR, Kim KS, Venkitanarayanan K. 2014. Sub-inhibitory concentrations of trans-cinnamaldehyde attenuate virulence in Cronobacter sakazakii in vitro. Int J Mol Sci. 15:8639–8655. doi:10.3390/ijms15058639
  • Arcidiacono S, Soares JW, Meehan AM, Marek P, Kirby R. 2009. Membrane permeability and antimicrobial kinetics of cecropin P1 against Escherichia coli. J Pept Sci. 15:398–403. doi:10.1002/psc.1125
  • Aruna K, Mobashshera T. 2012. Prevalence of extended spectrum beta-lactamase production among uropathogens in south Mumbai and its antibiogram pattern. Excli J. 11:363–372.
  • Asteri IA, Kittaki N, Tsakalidou E. 2010. The effect of wild lactic acid bacteria on the production of goat’s milk soft cheese. Int Dairy J. 63:234–242. doi:10.1111/j.1471-0307.2010.00564.x
  • Bahar AA, Ren D. 2013. Antimicrobial peptides. Pharmaceuticals (Basel)). 6:1543–1575. doi:10.3390/ph6121543
  • Blake KL, Randall CP, O'Neill AJ. 2011. In vitro studies indicate a high resistance potential for the lantibiotic nisin in Staphylococcus aureus and define a genetic basis for nisin resistance. Antimicrob Agents Chemother. 55:2362–2368. doi:10.1128/AAC.01077-10
  • Borges A, Ferreira C, Saavedra MJ, Simões M. 2013. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist. 19:256–265. doi:10.1089/mdr.2012.0244
  • Büttner H, Mack D, Rohde H. 2015. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol. 5:14. doi:10.3389/fcimb.2015.00014
  • Cavicchioli VQ, Dornellas WDS, Perin LM, Pieri FA, d, Melo Franco BDG, Todorov SD, Nero LA. 2015. Genetic diversity and some aspects of antimicrobial activity of lactic acid bacteria isolated from goat milk. Appl Biochem Biotechnol. 175:2806–2822. doi:10.1007/s12010-015-1511-8
  • CLSI. 2012. Performance standards for antimicrobial disc susceptibility tests; approved standard. 11th ed. CLSI; document M02-A11. Wayne (PA): Clinical and Laboratory Standards Institute.
  • Cornaglia G, Akova M, Amicosante G, Cantón R, Cauda R, Docquier JD, Edelstein M, Frère JM, Fuzi M, Galleni M, et al. 2007. Metallo-beta-lactamases as emerging resistance determinants in Gram-negative pathogens: open issues. Int J Antimicrob Agents. 29:380–388. doi:10.1016/j.ijantimicag.2006.10.008
  • Cotter PD, Ross RP, Hill C. 2013. Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol. 11:95–105. doi:10.1038/nrmicro2937
  • Cullings KW. 1992. Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol Ecol. 1:233–240. doi:10.1111/j.1365-294X.1992.tb00182.x
  • Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P, Akhter Y, Bhattacharjee S. 2016. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: a combinatorial study with azithromycin and gentamicin. Sci Rep. 6:23347. doi:10.1038/srep23347
  • De Giani A, Bovio F, Forcella M, Fusi P, Sello G, Di Gennaro P. 2019. Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Express. 9:88. doi:10.1186/s13568-019-0813-6
  • Dehghanifar S, Keyhanfar M, Emtiazi G. 2019. Production and partial purification of thermostable bacteriocins from Bacillus pumilus ZED17 and DFAR8 strains with antifungal activity. Mol Biol Res Commun. 8:41–49. doi:10.22099/mbrc.2019.31563.1367
  • Dhillon RH, Clark J. 2012. ESBLs: a clear and present danger? Crit Care Res Pract. 2012:625170. doi:10.1155/2012/625170
  • Dosler S, Mataraci E. 2013. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides. 49:53–58. doi:10.1016/j.peptides.2013.08.008
  • Dusane DH, Damare SR, Nancharaiah YV, Ramaiah N, Venugopalan VP, Kumar AR, Zinjarde SS. 2013. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis. PLoS One. 8:e64501. doi:10.1371/journal.pone.0064501
  • Epand RF, Pollard JE, Wright JO, Savage PB, Epand RM. 2010. Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrob Agents Chemother. 54:3708–3713. doi:10.1128/AAC.00380-10
  • Fernández PF, Peropadre A, Pérez Martín JM, Herrero O, Hazen MJ. 2009. An integrated cellular model to evaluate cytotoxic effects in mammalian cell lines. Toxicol in Vitro. 23:1553–1558. doi:10.1016/j.tiv.2009.06.017
  • Field D, Gaudin N, Lyons F, O'Connor PM, Cotter PD, Hill C, Ross RP. 2015. A bioengineered nisin derivative to control biofilms of Staphylococcus pseudintermedius. PLoS One. 10:e0119684. doi:10.1371/journal.pone.0119684
  • Field D, Begley M, O'Connor PM, Daly KM, Hugenholtz F, Cotter PD, Hill C, Ross RP. 2012. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS One. 7:e46884. doi:10.1371/journal.pone.0046884
  • Furtado DN, Favaro L, Nero LA, de Melo Franco BDG, Todorov SD. 2019. Nisin production by Enterococcus hirae DF105Mi isolated from Brazilian goat milk. Probiotics Antimicrob Proteins. 11:1391–1402. doi:10.1007/s12602-019-09553-6
  • Geitani R, Moubareck CA, Touqui L, Sarkis DK. 2019. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol. 19:54. doi:10.1186/s12866-019-1416-8
  • Gelband H, Miller-Petrie M, Pant S, Gandra S, Levinson J, Barter D, White A, Laxminarayan R. 2015. The state of the world’s antibiotics. Wound Heal S Afr. 8:30–34.
  • Goh HF, Philip K. 2015. Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS One. 10:e0140434. doi:10.1371/journal.pone.0140434
  • Goldstein BP, Wei J, Greenberg K, Novick R. 1998. Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection model. J Antimicrob Chemother. 42:277–278. doi:10.1093/jac/42.2.277
  • Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, Seo CH, Park Y. 2014. Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother. 58:1622–1629. doi:10.1128/AAC.02473-13
  • Goyal C, Malik RK, Pradhan D. 2018. Purification and characterization of a broad spectrum bacteriocin produced by a selected Lactococcus lactis strain 63 isolated from Indian dairy products. J Food Sci Technol. 55:3683–3692. doi:10.1007/s13197-018-3298-4
  • Gupta S, Bansal R, Maheshwari D, Ali J, Gabrani R, Dang S. 2014. Development of a nanoemulsion system for Polyphenon 60 and Cranberry. Adv Sci Lett. 20:1683–1686. doi:10.1166/asl.2014.5579
  • Hartley CL, Robbins CM, Richmond MH. 1978. Quantitative assessment of bacterial adhesion to eukaryotic cells of human origin. J Appl Bacteriol. 45:91–97. doi:10.1111/j.1365-2672.1978.tb04202.x
  • Hayes K, Cotter L, O’Halloran F. 2019. In vitro synergistic activity of erythromycin and nisin against clinical Group B Streptococcus isolates. J Appl Microbiol. 127:1381–1390. doi:10.1111/jam.14400
  • Héchard Y, Sahl HG. 2002. Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie. 84:545–557. doi:10.1016/s0300-9084(02)01417-7
  • Koch G, Yepes A, Förstner KU, Wermser C, Stengel ST, Modamio J, Ohlsen K, Foster KR, Lopez D. 2014. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell. 158:1060–1071. doi:10.1016/j.cell.2014.06.046
  • Kumar M, Chaturvedi AK, Kavishwar A, Shukla PK, Kesarwani AP, Kundu B. 2005. Identification of a novel antifungal nonapeptide generated by combinatorial approach. Int J Antimicrob Agents. 25:313–320. doi:10.1016/j.ijantimicag.2004.10.015
  • Lüer S, Troller R, Jetter M, Spaniol V, Aebi C. 2011. Topical curcumin can inhibit deleterious effects of upper respiratory tract bacteria on human oropharyngeal cells in vitro: potential role for patients with cancer therapy induced mucositis? Support Care Cancer. 19:799–806. doi:10.1007/s00520-010-0894-x
  • Martín-Escolano R, Cebrián R, Martín-Escolano J, Rosales MJ, Maqueda M, Sánchez-Moreno M, Marín C. 2019. Insights into Chagas treatment based on the potential of bacteriocin AS-48. Int J Parasitol Drugs Drug Resist. 10:1–8. doi:10.1016/j.ijpddr.2019.03.003
  • Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP. 2017. Bacteriocin-antimicrobial synergy: A medical and food perspective. Front Microbiol. 8:1205. doi:10.3389/fmicb.2017.01205
  • McDougall LA, Holzapfel WH, Schillinger U, Feely DE, Rupnow JH. 1994. Scanning electron microscopy of target cells and molecular weight determination of a bacteriocin produced by Lactococcus lactis D53. Int J Food Microbiol. 24:295–308. doi:10.1016/0168-1605(94)90127-9
  • Mobashshera T, Aruna K. 2015. Phenotypic and molecular characterization of MBL genes among uropathogens isolated in Mumbai city. Microbiol Res J Int. 5:368–383. doi:10.9734/BMRJ/2015/13762
  • Mohapatra AR, Jeevaratnam K. 2019. Inhibiting bacterial colonization on catheters: antibacterial and antibiofilm activities of bacteriocins from Lactobacillus plantarum SJ33. J Glob Antimicrob Resist. 19:85–92. doi:10.1016/j.jgar.2019.02.021
  • Morão LG, Polaquini CR, Kopacz M, Torrezan GS, Ayusso GM, Dilarri G, Cavalca LB, Zielińska A, Scheffers DJ, Regasini LO, et al. 2019. A simplified curcumin targets the membrane of Bacillus subtilis. Microbiologyopen. 8:e00683. doi:10.1002/mbo3.683
  • Mota-Meira M, Lapointe G, Lacroix C, Lavoie MC. 2000. MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother. 44:24–29. doi:10.1128/aac.44.1.24-29.2000
  • Muhammad JS, Zaidi SF, Shaharyar S, Refaat A, Usmanghani K, Saiki I, Sugiyama T. 2015. Anti-inflammatory effect of cinnamaldehyde in Helicobacter pylori induced gastric inflammation. Biol Pharm Bull. 38:109–115.
  • Murinda SE, Rashid KA, Roberts RF. 2003. In vitro assessment of the cytotoxicity of nisin, pediocin, and selected colicins on simian virus 40-transfected human colon and Vero monkey kidney cells with trypan blue staining viability assays. J Food Prot. 66:847–853. doi:10.4315/0362-028x-66.5.847
  • Neupane S, Pant ND, Khatiwada S, Chaudhary R, Banjara MR. 2016. Correlation between biofilm formation and resistance toward different commonly used antibiotics along with extended spectrum beta lactamase production in uropathogenic Escherichia coli isolated from the patients suspected of urinary tract infections visiting Shree Birendra Hospital, Chhauni, Kathmandu, Nepal. Antimicrob Resist Infect Control. 5:5. doi:10.1186/s13756-016-0104-9
  • Noll KS, Prichard MN, Khaykin A, Sinko PJ, Chikindas ML. 2012. The natural antimicrobial peptide subtilosin acts synergistically with glycerol monolaurate, lauric arginate, and ε-poly-L-lysine against bacterial vaginosis-associated pathogens but not human lactobacilli. Antimicrob Agents Chemother. 56:1756–1761. doi:10.1128/AAC.05861-11
  • Perin LM, Nero LA. 2014. Antagonistic lactic acid bacteria isolated from goat milk and identification of a novel nisin variant Lactococcus lactis. BMC Microbiol. 14:36. doi:10.1186/1471-2180-14-36
  • Piper C, Draper LA, Cotter PD, Ross RP, Hill C. 2009. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J Antimicrob Chemother. 64:546–551. doi:10.1093/jac/dkp221
  • Rodrigues G, Silva GGO, Buccini DF, Duque HM, Dias SC, Franco OL. 2019. Bacterial proteinaceous compounds with multiple activities toward cancers and microbial infection. Front Microbiol. 10:1690. doi:10.3389/fmicb.2019.01690
  • Saelao S, Maneerat S, Kaewsuwan S, Rabesona H, Choiset Y, Haertlé T, Chobert JM. 2017. Inhibition of Staphylococcus aureus in vitro by bacteriocinogenic Lactococcus lactis KTH0-1S isolated from Thai fermented shrimp (Kung-som) and safety evaluation. Arch Microbiol. 199:551–562. doi:10.1007/s00203-016-1324-3
  • Schagger H, Von Jagow G. 1987. Tricine-sodium dodecyl sulphate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 166:368–379. doi:10.1016/0003-2697(87)90587-2
  • Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. 2015. Risk factors for acquisition of extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae in North-Indian hospitals. Saudi J Biol Sci. 22:37–41. doi:10.1016/j.sjbs.2014.05.006
  • Sharma G, Dang S, Gupta S, Gabrani R. 2018. Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from Bacillus subtilis GAS101. Med Princ Pract. 27:186–192. doi:10.1159/000487306
  • Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R. 2012. Green tea extract: possible mechanism and antibacterial activity on skin pathogens. Food Chem. 135:672–675. doi:10.1016/j.foodchem.2012.04.143
  • Sharma G, Raturi K, Dang S, Gupta S, Gabrani R. 2014. Combinatorial antimicrobial effect of curcumin with selected phytochemicals on Staphylococcus epidermidis. J Asian Nat Prod Res. 16:535–541. doi:10.1080/10286020.2014.911289
  • Shin JM, Ateia I, Paulus JR, Liu H, Fenno JC, Rickard AH, Kapila YL. 2015a. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Front Microbiol. 6:617. doi:10.3389/fmicb.2015.00617
  • Shin HS, Baek DH, Lee SH. 2018. Inhibitory effect of Lactococcus lactis on the bioactivity of periodontopathogens. J Gen Appl Microbiol. 64:55–61. doi:10.2323/jgam.2017.06.003
  • Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. 2015b. Biomedical applications of nisin. J Appl Microbiol. 120:1449–1465. doi:10.1111/jam.13033
  • Singh AP, Preet S, Rishi P. 2014. Nisin/β-lactam adjunct therapy against Salmonella enterica serovar Typhimurium: a mechanistic approach. J Antimicrob Chemother. 69:1877–1887. doi:10.1093/jac/dku049
  • Siroli L, Camprini L, Pisano MB, Patrignani F, Lanciotti R. 2019. Volatile molecule profiles and anti-Listeria monocytogenes activity of nisin producers Lactococcus lactis strains in vegetable drinks. Front Microbiol. 10:563. doi:10.3389/fmicb.2019.00563
  • Song DF, Zhu MY, Gu Q. 2014. Purification and characterization of plantaricin ZJ5, a new bacteriocin produced by Lactobacillus plantarum ZJ5. PLoS One. 9:e105549. doi:10.1371/journal.pone.0105549
  • Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. 2000. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 40:175–179. doi:10.1016/S0167-7012(00)00122-6
  • Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q. 2015. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 15:36. doi:10.1186/s12866-015-0376-x
  • Tasakis RN, Touraki M. 2018. Identification of bacteriocins secreted by the probiotic Lactococcus lactis following microwave-assisted acid hydrolysis (MAAH), amino acid content analysis, and bioinformatics. Anal Bioanal Chem. 410:1299–1310. doi:10.1007/s00216-017-0770-3
  • Thomas VM, Brown RM, Ashcraft DS, Pankey GA. 2019. Synergistic effect between nisin and polymyxin B against pandrug-resistant and extensively drug-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 53:663–668. doi:10.1016/j.ijantimicag.2019.03.009
  • Toews ML, Bylund DB. 2005. Pharmacologic principles for combination therapy. Proc Am Thorac Soc. 2:282–289. doi:10.1513/pats.200504-037SR
  • Yildirim Z, Yildirim M, Johnson MG. 2007. Effects of bifidocin B and lactococcin R on the growth of Listeria monocytogenes and Bacillus cereus on sterile chicken breast. J Food Safety. 27:373–385. doi:10.1111/j.1745-4565.2007.00088.x
  • Zendo T, Nakayama J, Fujita K, Sonomoto K. 2008. Bacteriocin detection by liquid chromatography/mass spectrometry for rapid identification. J Appl Microbiol. 104:499–507. doi:10.1111/j.1365-2672.2007.03575.x
  • Zhang P, Shi Q, Hu H, Hong B, Wu X, Du X, Akova M, Yu Y. 2020. Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China. Clin Microbiol Infect. 26:124–e1–124-e4.
  • Zhang J, Yang Y, Yang H, Bu Y, Yi H, Zhang L, Han X, Ai L. 2018. Purification and partial characterization of bacteriocin Lac-B23, a novel bacteriocin production by Lactobacillus plantarum J23, isolated from Chinese traditional fermented milk. Front Microbiol. 9:2165. doi:10.3389/fmicb.2018.02165
  • Zhao M, Qu Y, Liu J, Mai S, Gu L. 2020. A universal adhesive incorporating antimicrobial peptide nisin: effects on Streptococcus mutans and saliva-derived multispecies biofilms. Odontology. 108:376–385. doi:10.1007/s10266-019-00478-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.