Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 8
806
Views
8
CrossRef citations to date
0
Altmetric
Articles

Molecules involved in motility regulation in Escherichia coli cells: a review

ORCID Icon, , , & ORCID Icon
Pages 889-908 | Received 30 Apr 2020, Accepted 15 Sep 2020, Published online: 07 Oct 2020

References

  • Abt MC, Pamer EG. 2014. Commensal bacteria mediated defenses against pathogens. Curr Opin Immunol. 29:16–22. doi:10.1016/j.coi.2014.03.003
  • Allison SE, Silphaduang U, Mascarenhas M, Konczy P, Quan Q, Karmali M, Coombes BK. 2012. Novel repressor of Escherichia coli O157:H7 motility encoded in the putative fimbrial cluster OI-1. J Bacteriol. 194:5343–5352. doi:10.1128/JB.01025-12
  • Amikam D, Galperin MY. 2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics. 22:3–6. doi:10.1093/bioinformatics/bti739
  • Amores GR, de las Heras A, Sanches-Medeiros A, Elfick A, Silva-Rocha R. 2017. Systematic identification of novel regulatory interactions controlling biofilm formation in the bacterium Escherichia coli. Sci Rep. 7:16768. doi:10.1038/s41598-017-17114-6
  • Anderson JK, Smith TG, Hoover TR. 2010. Sense and sensibility: flagellum-mediated gene regulation. Trends Microbiol. 18:30–37. doi:10.1016/j.tim.2009.11.001
  • Asfour HZ. 2018. Anti-quorum sensing natural compounds. J Microsc Ultrastruct. 6:1–10. doi:10.4103/JMAU.JMAU_10_18
  • Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A. 2007. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun. 75:4597–4607. doi:10.1128/IAI.00630-07
  • Beloin C, Roux A, Ghigo JM. 2008. Escherichia coli biofilms. Curr Top Microbiol Immunol. 322:249–289. doi:10.1007/978-3-540-75418-3_12
  • Berlanga M, Guerrero R. 2016. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact. 15:165. doi:10.1186/s12934-016-0569-5
  • Bertin P, Terao E, Lee EH, Lejeune P, Colson C, Danchin A, Collatz E. 1994. The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. J Bacteriol. 176:5537–5540. doi:10.1128/jb.176.17.5537-5540.1994
  • Bhavsar AP, Guttman JA, Finlay BB. 2007. Manipulation of host-cell pathways by bacterial pathogens. Nature. 449:827–834. doi:10.1038/nature06247
  • Blount ZD. 2015. The unexhausted potential of E. coli. Elife. 4:e05826. doi:10.7554/eLife.05826
  • Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U. 2010. Second messenger-mediated adjustment of bacterial swimming velocity. Cell. 141:107–116. doi:10.1016/j.cell.2010.01.018
  • Borges A, Saavedra MJ, Simoes M. 2012. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling. 28:755–767. doi:10.1080/08927014.2012.706751
  • Borkovich KA, Simon MI. 1990. The dynamics of protein phosphorylation in bacterial chemotaxis. Cell. 63:1339–1348. doi:10.1016/0092-8674(90)90429-i
  • Brombacher E, Dorel C, Zehnder AJB, Landini P. 2003. The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli. Microbiology (Reading). 149:2847–2857. doi:10.1099/mic.0.26306-0
  • Carter MQ, Feng D, Li HH. 2019. Curli fimbriae confer shiga toxin-producing Escherichia coli a competitive trait in mixed biofilms. Food Microbiol. 82:482–488. doi:10.1016/j.fm.2019.03.024
  • Carter MQ, Louie JW, Feng D, Zhong W, Brandl MT. 2016. Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation. Food Microbiol. 57:81–89. doi:10.1016/j.fm.2016.01.006
  • Chaban B, Hughes HV, Beeby M. 2015. The flagellum in bacterial pathogens: for motility and a whole lot more. Semin Cell Dev Biol. 46:91–103. doi:10.1016/j.semcdb.2015.10.032
  • Chilcott GS, Hughes KT. 2000. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol Mol Biol Rev. 64:694–708. doi:10.1128/mmbr.64.4.694-708.2000
  • Chu W, Zere TR, Weber MM, Wood TK, Whiteley M, Hidalgo-Romano B, Valenzuela E, Jr., McLean RJ. 2012. Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Appl Environ Microbiol. 78:411–419. doi:10.1128/AEM.06396-11
  • Clarke MB, Sperandio V. 2005. Transcriptional autoregulation by quorum sensing Escherichia coli regulators B and C (QseBC) in enterohaemorrhagic E. coli (EHEC). Mol Microbiol. 58:441–455. doi:10.1111/j.1365-2958.2005.04819.x
  • Clausznitzer D, Oleksiuk O, Lovdok L, Sourjik V, Endres RG. 2010. Chemotactic response and adaptation dynamics in Escherichia coli. PLoS Comput Biol. 6:e1000784. doi:10.1371/journal.pcbi.1000784
  • Connolly JP, Finlay BB, Roe AJ. 2015. From ingestion to colonization: the influence of the host environment on regulation of the LEE encoded type III secretion system in enterohaemorrhagic, Escherichia coli. Front Microbiol. 6:568. doi:10.3389/fmicb.2015.00568
  • Connolly JPR, O'Boyle N, Turner NCA, Browning DF, Roe AJ. 2019. Distinct intraspecies virulence mechanisms regulated by a conserved transcription factor. Proc Natl Acad Sci USA. 116:19695–19704. doi:10.1073/pnas.1903461116
  • Conway T, Cohen PS. 2015. Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr. 3.doi:10.1128/microbiolspec.MBP-0006-2014
  • Cowan MM. 1999. Plant products as antimicrobial agents. Clin Microbiol Rev. 12:564–582.
  • Croxen MA, Finlay BB. 2010. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol. 8:26–38. doi:10.1038/nrmicro2265
  • Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 26:822–880. doi:10.1128/CMR.00022-13
  • Darnton NC, Turner L, Rojevsky S, Berg HC. 2007. On torque and tumbling in swimming Escherichia coli. J Bacteriol. 189:1756–1764. doi:10.1128/JB.01501-06
  • Davey ME, O’Toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 64:847–867. doi:10.1128/mmbr.64.4.847-867.2000
  • De Lay N, Gottesman S. 2012. A complex network of small non-coding RNAs regulate motility in Escherichia coli. Mol Microbiol. 86:524–538. doi:10.1111/j.1365-2958.2012.08209.x
  • Dos Santos Ramos MA, Da Silva PB, Sposito L, De Toledo LG, Bonifacio BV, Rodero CF, Dos Santos KC, Chorilli M, Bauab TM. 2018. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine. 13:1179–1213. doi:10.2147/IJN.S146195
  • Dozois CM, Curtiss R. 3rd. 1999. Pathogenic diversity of Escherichia coli and the emergence of 'exotic' islands in the gene stream. Vet Res. 30:157–179.
  • Dressaire C, Moreira RN, Barahona S, Alves de Matos AP, Arraiano CM. 2015. BolA is a transcriptional switch that turns off motility and turns on biofilm development. mBio. 6:e02352–14. doi:10.1128/mBio.02352-14
  • Dudin O, Geiselmann J, Ogasawara H, Ishihama A, Lacour S. 2014. Repression of flagellar genes in exponential phase by CsgD and CpxR, two crucial modulators of Escherichia coli biofilm formation. J Bacteriol. 196:707–715. doi:10.1128/JB.00938-13
  • Dunne WM. Jr. 2002. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 15:155–166. doi:10.1128/cmr.15.2.155-166.2002
  • Dusane DH, Hosseinidoust Z, Asadishad B, Tufenkji N. 2014. Alkaloids modulate motility, biofilm formation and antibiotic susceptibility of uropathogenic Escherichia coli. PLoS One. 9:e112093. doi:10.1371/journal.pone.0112093
  • Emody L, Kerenyi M, Nagy G. 2003. Virulence factors of uropathogenic Escherichia coli. Int J Antimicrob Agents. 22:29–33. doi:10.1016/s0924-8579(03)00236-x
  • Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA. 1997. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol. 13:457–512. doi:10.1146/annurev.cellbio.13.1.457
  • Fang K, Jin X, Hong SH. 2018. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci Rep. 8:4939. doi:10.1038/s41598-018-23180-1
  • Fang X, Gomelsky M. 2010. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol. 76:1295–1305. doi:10.1111/j.1365-2958.2010.07179.x
  • Ferrandiz MJ, Bishop K, Williams P, Withers H. 2005. HosA, a member of the SlyA family, regulates motility in enteropathogenic Escherichia coli. Infect Immun. 73:1684–1694. doi:10.1128/IAI.73.3.1684-1694.2005
  • Ferrières L, Clarke DJ. 2003. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol. 50:1665–1682. doi:10.1046/j.1365-2958.2003.03815.x
  • Fleitas Martinez O, Cardoso MH, Ribeiro SM, Franco OL. 2019. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol. 9:74. doi:10.3389/fcimb.2019.00074
  • Fleitas Martinez O, Rigueiras PO, Pires ADS, Porto WF, Silva ON, de la Fuente-Nunez C, Franco OL. 2018. Interference with quorum-sensing signal biosynthesis as a promising therapeutic strategy against multidrug-resistant pathogens. Front Cell Infect Microbiol. 8:444. doi:10.3389/fcimb.2018.00444
  • Ford KM, Antani JD, Nagarajan A, Johnson MM, Lele PP. 2018. Switching and torque generation in swarming E. coli. Front Microbiol. 9:2197. doi:10.3389/fmicb.2018.02197
  • Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanie-Cornet MP, Gutierrez C, Cam K. 2003. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol. 49:823–832. doi:10.1046/j.1365-2958.2003.03601.x
  • Friedlander RS, Vogel N, Aizenberg J. 2015. Role of flagella in adhesion of Escherichia coli to abiotic surfaces. Langmuir. 31:6137–6144. doi:10.1021/acs.langmuir.5b00815
  • Galie S, Garcia-Gutierrez C, Miguelez EM, Villar CJ, Lombo F. 2018. Biofilms in the food industry: health aspects and control methods. Front Microbiol. 9:898. doi:10.3389/fmicb.2018.00898
  • Gao R, Stock AM. 2009. Biological insights from structures of two-component proteins. Annu Rev Microbiol. 63:133–154. doi:10.1146/annurev.micro.091208.073214
  • Ghaz-Jahanian MA, Khodaparastan F, Berenjian A, Jafarizadeh-Malmiri H. 2013. Influence of small RNAS on biofilm formation process in bacteria. Mol Biotechnol. 55:288–297. doi:10.1007/s12033-013-9700-6
  • Gomez-Gomez JM, Manfredi C, Alonso JC, Blazquez J. 2007. A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12. BMC Biol. 5:14. doi:10.1186/1741-7007-5-14
  • Gonelimali FD, Lin J, Miao W, Xuan J, Charles F, Chen M, Hatab SR. 2018. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol. 9:1639.
  • Gonzalez-Lamothe R, Mitchell G, Gattuso M, Diarra MS, Malouin F, Bouarab K. 2009. Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci. 10:3400–3419. doi:10.3390/ijms10083400
  • Gottesman S, Trisler P, Torres-Cabassa A. 1985. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J Bacteriol. 162:1111–1119. doi:10.1128/JB.162.3.1111-1119.1985
  • Grassi L, Maisetta G, Esin S, Batoni G. 2017. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol. 8:2409. doi:10.3389/fmicb.2017.02409
  • Guttenplan SB, Kearns DB. 2013. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev. 37:849–871. doi:10.1111/1574-6976.12018
  • Haiko J, Westerlund-Wikstrom B. 2013. The role of the bacterial flagellum in adhesion and virulence. Biology (Basel). 2:1242–1267. doi:10.3390/biology2041242
  • Hara S, Isoda R, Tahvanainen T, Hashidoko Y. 2012. Trace amounts of furan-2-carboxylic acids determine the quality of solid agar plates for bacterial culture. PLoS One. 7:e41142. doi:10.1371/journal.pone.0041142
  • Hengge R. 2016. Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins. Philos Trans R Soc Lond B Biol Sci. 371:1707.
  • Herzberg M, Kaye IK, Peti W, Wood TK. 2006. YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol. 188:587–598. doi:10.1128/JB.188.2.587-598.2006
  • Hidalgo G, Chan M, Tufenkji N. 2011. Inhibition of Escherichia coli CFT073 fliC expression and motility by cranberry materials. Appl Environ Microbiol. 77:6852–6857. doi:10.1128/AEM.05561-11
  • Huang WC, Lin CY, Hashimoto M, Wu JJ, Wang MC, Lin WH, Chen CS, Teng CH. 2020. The role of the bacterial protease Prc in the uropathogenesis of extraintestinal pathogenic Escherichia coli. J Biomed Sci. 27:14. doi:10.1186/s12929-019-0605-y
  • Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T. 2002. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol. 184:290–301. doi:10.1128/jb.184.1.290-301.2002
  • Jafari A, Aslani MM, Bouzari S. 2012. Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iran J Microbiol. 4:102–117.
  • Jang HI, Eom YB. 2019. Repurposing auranofin to combat uropathogenic Escherichia coli biofilms. J Appl Microbiol. 127:459–471. doi:10.1111/jam.14312
  • Jaques S, Kim YK, McCarter LL. 1999. Mutations conferring resistance to phenamil and amiloride, inhibitors of sodium-driven motility of Vibrio parahaemolyticus. Proc Natl Acad Sci USA. 96:5740–5745. doi:10.1073/pnas.96.10.5740
  • Jefferson KK. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol Lett. 236:163–173. doi:10.1016/j.femsle.2004.06.005
  • Jiang F, An C, Bao Y, Zhao X, Jernigan RL, Lithio A, Nettleton D, Li L, Wurtele ES, Nolan LK, et al. 2015. ArcA controls metabolism, chemotaxis, and motility contributing to the pathogenicity of avian pathogenic Escherichia coli. Infect Immun. 83:3545–3554. doi:10.1128/IAI.00312-15
  • Jonas K, Edwards AN, Simm R, Romeo T, Römling U, Melefors O. 2008. The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol Microbiol. 70:236–257. doi:10.1111/j.1365-2958.2008.06411.x
  • Joo HS, Otto M. 2012. Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol. 19:1503–1513. doi:10.1016/j.chembiol.2012.10.022
  • Jørgensen MG, Nielsen JS, Boysen A, Franch T, Møller-Jensen J, Valentin-Hansen P. 2012. Small regulatory RNAs control the multi-cellular adhesive lifestyle of Escherichia coli. Mol Microbiol. 84:36–50. doi:10.1111/j.1365-2958.2012.07976.x
  • Kai-Larsen Y, Luthje P, Chromek M, Peters V, Wang X, Holm A, Kadas L, Hedlund KO, Johansson J, Chapman MR, et al. 2010. Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog. 6:e1001010. doi:10.1371/journal.ppat.1001010
  • Kakkanat A, Phan MD, Lo AW, Beatson SA, Schembri MA. 2017. Novel genes associated with enhanced motility of Escherichia coli ST131. PLoS One. 12:e0176290. doi:10.1371/journal.pone.0176290
  • Kalir S, McClure J, Pabbaraju K, Southward C, Ronen M, Leibler S, Surette MG, Alon U. 2001. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science. 292:2080–2083. doi:10.1126/science.1058758
  • Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol. 2:123–140. doi:10.1038/nrmicro818
  • Kawagishi I, Maekawa Y, Atsumi T, Homma M, Imae Y. 1995. Isolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources. J Bacteriol. 177:5158–5160. doi:10.1128/jb.177.17.5158-5160.1995
  • Kawase M, Motohashi N, Sakagami H, Kanamoto T, Nakashima H, Ferenczy L, Wolfard K, Miskolci C, Molnár J. 2001. Antimicrobial activity of trifluoromethyl ketones and their synergism with promethazine. Int J Antimicrob Agents. 18:161–165. doi:10.1016/s0924-8579(01)00340-5
  • Kearns DB. 2010. A field guide to bacterial swarming motility. Nat Rev Microbiol. 8:634–644. doi:10.1038/nrmicro2405
  • Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, et al. 2011. EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res. 39:D583–D590. doi:10.1093/nar/gkq1143
  • Khan F, Javaid A, Kim YM. 2019. Functional diversity of quorum sensing receptors in pathogenic bacteria: interspecies, intraspecies and interkingdom level. Curr Drug Targets. 20:655–667. doi:10.2174/1389450120666181123123333
  • Khan F, Khan MM, Kim YM. 2018. Recent progress and future perspectives of antibiofilm drugs immobilized on nanomaterials. Curr Pharm Biotechnol. 19:631–643. doi:10.2174/1389201019666180828090052
  • Khan F, Oloketuyi SF, Kim YM. 2019. Diversity of bacteria and bacterial products as antibiofilm and antiquorum sensing drugs against pathogenic bacteria. Curr Drug Targets. 20:1156–1179. doi:10.2174/1389450120666190423161249
  • Kim EA, Blair DF. 2015. Function of the histone-like protein H-NS in motility of Escherichia coli: multiple regulatory roles rather than direct action at the flagellar motor. J Bacteriol. 197:3110–3120. doi:10.1128/JB.00309-15
  • Kim YG, Lee JH, Gwon G, Kim SI, Park JG, Lee J. 2016. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157:H7. Sci Rep. 6:36377. doi:10.1038/srep36377
  • Kitagawa R, Takaya A, Yamamoto T. 2011. Dual regulatory pathways of flagellar gene expression by ClpXP protease in enterohaemorrhagic Escherichia coli. Microbiology (Reading). 157:3094–3103. doi:10.1099/mic.0.051151-0
  • Laganenka L, Colin R, Sourjik V. 2016. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat Commun. 7:12984. doi:10.1038/ncomms12984
  • Lee C, Park C. 2013. Mutations upregulating the flhDC operon of Escherichia coli K-12. J Microbiol. 51:140–144. doi:10.1007/s12275-013-2212-z
  • Lee J, Bansal T, Jayaraman A, Bentley WE, Wood TK. 2007. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl Environ Microbiol. 73:4100–4109. doi:10.1128/AEM.00360-07
  • Lee J, Jayaraman A, Wood TK. 2007. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol. 7:42. doi:10.1186/1471-2180-7-42
  • Lee JH, Cho HS, Joo SW, Chandra Regmi S, Kim JA, Ryu CM, Ryu SY, Cho MH, Lee J. 2013. Diverse plant extracts and trans-resveratrol inhibit biofilm formation and swarming of Escherichia coli O157:H7. Biofouling. 29:1189–1203. doi:10.1080/08927014.2013.832223
  • Lee JH, Kim YG, Cho HS, Ryu SY, Cho MH, Lee J. 2014. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7. Phytomedicine. 21:1037–1042. doi:10.1016/j.phymed.2014.04.008
  • Lee JH, Kim YG, Kim CJ, Lee JC, Cho MH, Lee J. 2012. Indole-3-acetaldehyde from Rhodococcus sp. BFI 332 inhibits Escherichia coli O157:H7 biofilm formation. Appl Microbiol Biotechnol. 96:1071–1078. doi:10.1007/s00253-012-3881-y
  • Lee JH, Kim YG, Lee J. 2017. Carvacrol-rich oregano oil and thymol-rich thyme red oil inhibit biofilm formation and the virulence of uropathogenic Escherichia coli. J Appl Microbiol. 123:1420–1428. doi:10.1111/jam.13602
  • Lee JH, Kim YG, Raorane CJ, Ryu SY, Shim JJ, Lee J. 2019. The anti-biofilm and anti-virulence activities of trans-resveratrol and oxyresveratrol against uropathogenic Escherichia coli. Biofouling. 35:758–767. doi:10.1080/08927014.2019.1657418
  • Lee JH, Kim YG, Ryu SY, Cho MH, Lee J. 2014. Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157:H7 and Staphylococcus aureus biofilm formation. Int J Food Microbiol. 174:47–55. doi:10.1016/j.ijfoodmicro.2013.12.030
  • Lee JH, Kim YG, Shim SH, Lee J. 2017. Antibiofilm activities of norharmane and its derivatives against Escherichia coli O157:H7 and other bacteria. Phytomedicine. 36:254–261. doi:10.1016/j.phymed.2017.10.013
  • Lee JH, Wood TK, Lee J. 2015. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 23:707–718. doi:10.1016/j.tim.2015.08.001
  • Lee KM, Kim WS, Lim J, Nam S, Youn M, Nam SW, Kim Y, Kim SH, Park W, Park S. 2009. Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157:H7. J Food Prot. 72:325–331. doi:10.4315/0362-028x-72.2.325
  • Lehnen D, Blumer C, Polen T, Wackwitz B, Wendisch VF, Unden G. 2002. LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol. 45:521–532. doi:10.1046/j.1365-2958.2002.03032.x
  • Lehti TA, Bauchart P, Dobrindt U, Korhonen TK, Westerlund-Wikström B. 2012. The fimbriae activator MatA switches off motility in Escherichia coli by repression of the flagellar master operon flhDC. Microbiology (Reading). 158:1444–1455. doi:10.1099/mic.0.056499-0
  • Lemke JJ, Durfee T, Gourse RL. 2009. DksA and ppGpp directly regulate transcription of the Escherichia coli flagellar cascade. Mol Microbiol. 74:1368–1379. doi:10.1111/j.1365-2958.2009.06939.x
  • Li B, Li N, Wang F, Guo L, Huang Y, Liu X, Wei T, Zhu D, Liu C, Pan H, et al. 2012. Structural insight of a concentration-dependent mechanism by which YdiV inhibits Escherichia coli flagellum biogenesis and motility. Nucleic Acids Res. 40:11073–11085. doi:10.1093/nar/gks869
  • Liu F, Fu J, Liu C, Chen J, Sun M, Chen H, Tan C, Wang X. 2017. Characterization and distinction of two flagellar systems in extraintestinal pathogenic Escherichia coli PCN033. Microbiol Res. 196:69–79. doi:10.1016/j.micres.2016.11.013
  • Liu X, Matsumura P. 1994. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol. 176:7345–7351. doi:10.1128/jb.176.23.7345-7351.1994
  • Lories B, Roberfroid S, Dieltjens L, De Coster D, Foster KR, Steenackers HP. 2020. Biofilm bacteria use stress responses to detect and respond to competitors. Curr Biol. 30:1231–1244.e4. doi:10.1016/j.cub.2020.01.065
  • Luterbach CL, Mobley HLT. 2018. Cross Talk between MarR-Like Transcription factors coordinate the regulation of motility in uropathogenic Escherichia coli. Infect Immun. 86:e00338–18. doi:10.1128/IAI.00338-18
  • Luthje P, Brauner A. 2014. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Microb Physiol. 65:337–372. doi:10.1016/bs.ampbs.2014.08.006
  • Majdalani N, Gottesman S. 2005. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol. 59:379–405. doi:10.1146/annurev.micro.59.050405.101230
  • Maki N, Gestwicki JE, Lake EM, Kiessling LL, Adler J. 2000. Motility and chemotaxis of filamentous cells of Escherichia coli. J Bacteriol. 182:4337–4342. doi:10.1128/jb.182.15.4337-4342.2000
  • McNamara JT, Morgan JL, Zimmer J. 2015. A molecular description of cellulose biosynthesis. Annu Rev Biochem. 84:895–921. doi:10.1146/annurev-biochem-060614-033930
  • McWilliams BD, Torres AG. 2014. Enterohemorrhagic Escherichia coli adhesins. Microbiol Spectr. 2:26103974. doi:10.1128/microbiolspec.EHEC-0003-2013
  • Mika F, Hengge R. 2013. Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella. Int J Mol Sci. 14:4560–4579. doi:10.3390/ijms14034560
  • Mikkelsen H, Duck Z, Lilley KS, Welch M. 2007. Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa. J Bacteriol. 189:2411–2416. doi:10.1128/JB.01687-06
  • Miller AS, Kohout SC, Gilman KA, Falke JJ. 2006. CheA kinase of bacterial chemotaxis: chemical mapping of four essential docking sites. Biochemistry. 45:8699–8711. doi:10.1021/bi060580y
  • Mittal N, Budrene EO, Brenner MP, van Oudenaarden A. 2003. Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc Natl Acad Sci USA. 100:13259–13263. doi:10.1073/pnas.2233626100
  • Molnar A, Wolfart K, Kawase M, Motohashi N, Molnar J. 2004. Effect of a trifluoromethyl ketone on the motility of proton pump-deleted mutant of Escherichia coli strain and its wild-type. In Vivo. 18:505–507.
  • Mondal SI, Ferdous S, Jewel NA, Akter A, Mahmud Z, Islam MM, Afrin T, Karim N. 2015. Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157:H7: an in silico approach. Adv Appl Bioinform Chem. 8:49–63.
  • Mostafa AA, Al-Askar AA, Almaary KS, Dawoud TM, Sholkamy EN, Bakri MM. 2018. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci. 25:361–366. doi:10.1016/j.sjbs.2017.02.004
  • Mulat M, Pandita A, Khan F. 2019. Medicinal plant compounds for combating the multi-drug resistant pathogenic bacteria: a review. Curr Pharm Biotechnol. 20:183–196. doi:10.2174/1872210513666190308133429
  • Newell PD, Monds RD, O'Toole GA. 2009. LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci USA. 106:3461–3466. doi:10.1073/pnas.0808933106
  • Nieto V, Partridge JD, Severin GB, Lai R-Z, Waters CM, Parkinson JS, Harshey RM. 2019. Under elevated c-di-GMP in Escherichia coli, YcgR alters flagellar motor bias and speed sequentially, with additional negative control of the flagellar regulon via the adaptor protein RssB. J Bacteriol. 202:e00578–19. doi:10.1128/JB.00578-19
  • Oloketuyi SF, Khan F. 2017. Strategies for biofilm inhibition and virulence attenuation of foodborne pathogen-Escherichia coli O157:H7. Curr Microbiol. 74:1477–1489. doi:10.1007/s00284-017-1314-y
  • Osterman IA, Dikhtyar YY, Bogdanov AA, Dontsova OA, Sergiev PV. 2015. Regulation of flagellar gene expression in bacteria. Biochemistry Mosc. 80:1447–1456. doi:10.1134/S000629791511005X
  • Packiavathy IA, Priya S, Pandian SK, Ravi AV. 2014. Inhibition of biofilm development of uropathogens by curcumin: an anti-quorum sensing agent from Curcuma longa. Food Chem. 148:453–460. doi:10.1016/j.foodchem.2012.08.002
  • Partridge JD, Nhu NTQ, Dufour YS, Harshey RM. 2019. Escherichia coli Remodels the chemotaxis pathway for swarming. mBio. 10:e00316–19. doi:10.1128/mBio.00316-19
  • Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. 2010. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a ‘backstop brake’ mechanism. Mol Cell. 38:128–139. doi:10.1016/j.molcel.2010.03.001
  • Perveen S, Chaudhary HS. 2015. In silico screening of antibacterial compounds from herbal sources against Vibrio cholerae. Pharmacogn Mag. 11:S550–S555. doi:10.4103/0973-1296.172960
  • Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N, Mehlis A, Hengge R. 2008. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev. 22:2434–2446. doi:10.1101/gad.475808
  • Pormohammad A, Nasiri MJ, Azimi T. 2019. Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infect Drug Resist. 12:1181–1197. doi:10.2147/IDR.S201324
  • Povolotsky TL, Hengge R. 2016. Genome-based comparison of cyclic Di-GMP signaling in pathogenic and commensal Escherichia coli strains. J Bacteriol. 198:111–126. doi:10.1128/JB.00520-15
  • Prateeksha Barik SK, Singh BN. 2019. Nanoemulsion-loaded hydrogel coatings for inhibition of bacterial virulence and biofilm formation on solid surfaces. Sci Rep. 9:6520. doi:10.1038/s41598-019-43016-w
  • Pratt LA, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol. 30:285–293. doi:10.1046/j.1365-2958.1998.01061.x
  • Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. 2015. Agents that inhibit bacterial biofilm formation. Future Med Chem. 7:647–671. doi:10.4155/fmc.15.7
  • Ranfaing J, Dunyach-Remy C, Louis L, Lavigne JP, Sotto A. 2018. Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) against the virulence of uropathogenic Escherichia coli. Sci Rep. 8:10706. doi:10.1038/s41598-018-29082-6
  • Rasmussen L, White EL, Pathak A, Ayala JC, Wang H, Wu JH, Benitez JA, Silva AJ. 2011. A high-throughput screening assay for inhibitors of bacterial motility identifies a novel inhibitor of the Na+-driven flagellar motor and virulence gene expression in Vibrio cholerae. Antimicrob Agents Chemother. 55:4134–4143. doi:10.1128/AAC.00482-11
  • Ren D, Sims JJ, Wood TK. 2001. Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol. 3:731–736. doi:10.1046/j.1462-2920.2001.00249.x
  • Richter AM, Possling A, Malysheva N, Yousef KP, Herbst S, von Kleist M, Hengge R. 2020. Local c-di-GMP Signaling in the control of synthesis of the E. coli biofilm exopolysaccharide pEtN-cellulose. J Mol Biol. 432:4576–4595. doi:10.1016/j.jmb.2020.06.006
  • Ridgway HG, Silverman M, Simon MI. 1977. Localization of proteins controlling motility and chemotaxis in Escherichia coli. J Bacteriol. 132:657–665. doi:10.1128/JB.132.2.657-665.1977
  • Römling U, Balsalobre C. 2012. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 272:541–561. doi:10.1111/joim.12004
  • Römling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 77:1–52. doi:10.1128/MMBR.00043-12
  • Römling U, Gomelsky M, Galperin MY. 2005. C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol. 57:629–639. doi:10.1111/j.1365-2958.2005.04697.x
  • Rossi E, Cimdins A, Luthje P, Brauner A, Sjoling A, Landini P, Romling U. 2018. "It's a gut feeling": Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol. 44:1–30. doi:10.1080/1040841X.2017.1303660
  • Rossi E, Paroni M, Landini P. 2018. Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J Appl Microbiol. 125:1587–1602. doi:10.1111/jam.14089
  • Rui L, Reardon KF, Wood TK. 2005. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl Microbiol Biotechnol. 66:422–429. doi:10.1007/s00253-004-1698-z
  • Ryan RP, Fouhy Y, Lucey JF, Dow JM. 2006. Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol. 188:8327–8334. doi:10.1128/JB.01079-06
  • Ryjenkov DA, Simm R, Romling U, Gomelsky M. 2006. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem. 281:30310–30314. doi:10.1074/jbc.C600179200
  • Sabnis NA, Yang H, Romeo T. 1995. Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J Biol Chem. 270:29096–29104. doi:10.1074/jbc.270.49.29096
  • Sarker M, Talcott C, Galande AK. 2013. In silico systems biology approaches for the identification of antimicrobial targets. Methods Mol Biol. 993:13–30. doi:10.1007/978-1-62703-342-8_2
  • Schirmer T, Jenal U. 2009. Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol. 7:724–735. doi:10.1038/nrmicro2203
  • Sharma VK, Bearson SM, Bearson BL. 2010. Evaluation of the effects of sdiA, a luxR homologue, on adherence and motility of Escherichia coli O157 : H7. Microbiology (Reading). 156:1303–1312. doi:10.1099/mic.0.034330-0
  • Shen XF, Ren LB, Teng Y, Zheng S, Yang XL, Guo XJ, Wang XY, Sha KH, Li N, Xu GY, et al. 2014. Luteolin decreases the attachment, invasion and cytotoxicity of UPEC in bladder epithelial cells and inhibits UPEC biofilm formation. Food Chem Toxicol. 72:204–211. doi:10.1016/j.fct.2014.07.019
  • Shi W, Zhou Y, Wild J, Adler J, Gross CA. 1992. DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol. 174:6256–6263. doi:10.1128/jb.174.19.6256-6263.1992
  • Shin S, Park C. 1995. Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol. 177:4696–4702. doi:10.1128/jb.177.16.4696-4702.1995
  • Silversmith RE, Guanga GP, Betts L, Chu C, Zhao R, Bourret RB. 2003. CheZ-mediated dephosphorylation of the Escherichia coli chemotaxis response regulator CheY: role for CheY glutamate 89. J Bacteriol. 185:1495–1502. doi:10.1128/jb.185.5.1495-1502.2003
  • Simm R, Morr M, Kader A, Nimtz M, Römling U. 2004. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol. 53:1123–1134. doi:10.1111/j.1365-2958.2004.04206.x
  • Simms AN, Mobley HL. 2008a. Multiple genes repress motility in uropathogenic Escherichia coli constitutively expressing type 1 fimbriae. J Bacteriol. 190:3747–3756. doi:10.1128/JB.01870-07
  • Simms AN, Mobley HL. 2008b. PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli. IAI. 76:4833–4841. doi:10.1128/IAI.00630-08
  • Singh S, Singh SK, Chowdhury I, Singh R. 2017. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J. 11:53–62. doi:10.2174/1874285801711010053
  • Sourjik V. 2004. Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 12:569–576. doi:10.1016/j.tim.2004.10.003
  • Sourjik V, Wingreen NS. 2012. Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol. 24:262–268. doi:10.1016/j.ceb.2011.11.008
  • Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P. 1999. Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol. 181:7500–7508. doi:10.1128/JB.181.24.7500-7508.1999
  • Soutourina OA, Bertin PN. 2003. Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev. 27:505–523. doi:10.1016/S0168-6445(03)00064-0
  • Sperandio V, Torres AG, Kaper JB. 2002. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol. 43:809–821. doi:10.1046/j.1365-2958.2002.02803.x
  • Suchanek VM, Esteban-Lopez M, Colin R, Besharova O, Fritz K, Sourjik V. 2020. Chemotaxis and cyclic-di-GMP signalling control surface attachment of Escherichia coli. Mol Microbiol. 113:728–739. doi:10.1111/mmi.14438
  • Sudo N, Soma A, Iyoda S, Oshima T, Ohto Y, Saito K, Sekine Y. 2018. Small RNA Esr41 inversely regulates expression of LEE and flagellar genes in enterohaemorrhagic Escherichia coli. Microbiology (Reading). 164:821–834. doi:10.1099/mic.0.000652
  • Swiecicki JM, Sliusarenko O, Weibel DB. 2013. From swimming to swarming: Escherichia coli cell motility in two-dimensions. Integr Biol (Camb). 5:1490–1494. doi:10.1039/c3ib40130h
  • Thomason MK, Fontaine F, De Lay N, Storz G. 2012. A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol Microbiol. 84:17–35. doi:10.1111/j.1365-2958.2012.07965.x
  • Trisler P, Gottesman S. 1984. lon transcriptional regulation of genes necessary for capsular polysaccharide synthesis in Escherichia coli K-12. J Bacteriol. 160:184–191. doi:10.1128/JB.160.1.184-191.1984
  • Turner L, Ryu WS, Berg HC. 2000. Real-time imaging of fluorescent flagellar filaments. J Bacteriol. 182:2793–2801. doi:10.1128/jb.182.10.2793-2801.2000
  • Udekwu KI, Darfeuille F, Vogel J, Reimegård J, Holmqvist E, Wagner EG. 2005. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev. 19:2355–2366. doi:10.1101/gad.354405
  • Ugboko HU, Nwinyi OC, Oranusi SU, Fatoki TH, Akinduti PA, Enibukun JM. 2019. In silico screening and analysis of broad-spectrum molecular targets and lead compounds for diarrhea therapy. Bioinform Biol Insights. 13:1177932219884297. doi:10.1177/1177932219884297
  • Vestby LK, Johannesen KC, Witso IL, Habimana O, Scheie AA, Urdahl AM, Benneche T, Langsrud S, Nesse LL. 2014. Synthetic brominated furanone F202 prevents biofilm formation by potentially human pathogenic Escherichia coli O103:H2 and Salmonella ser. Agona on abiotic surfaces. J Appl Microbiol. 116:258–268. doi:10.1111/jam.12355
  • Vikram A, Jayaprakasha GK, Uckoo RM, Patil BS. 2013. Inhibition of Escherichia coli O157:H7 motility and biofilm by β-sitosterol glucoside. Biochim Biophys Acta. 1830:5219–5228. doi:10.1016/j.bbagen.2013.07.022
  • Wada T, Hatamoto Y, Kutsukake K. 2012. Functional and expressional analyses of the anti-FlhD4C2 factor gene ydiV in Escherichia coli. Microbiology (Reading). 158:1533–1542. doi:10.1099/mic.0.056036-0
  • Wall E, Majdalani N, Gottesman S. 2018. The complex rcs regulatory cascade. Annu Rev Microbiol. 72:111–139. doi:10.1146/annurev-micro-090817-062640
  • Wang H, Zhang L, Silva AJ, Benitez JA. 2013. A quinazoline-2,4-diamino analog suppresses Vibrio cholerae flagellar motility by interacting with motor protein PomB and induces envelope stress. Antimicrob Agents Chemother. 57:3950–3959. doi:10.1128/AAC.00473-13
  • Wang Q, Zhao Y, McClelland M, Harshey RM. 2007. The RcsCDB signaling system and swarming motility in Salmonella enterica serovar Typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol. 189:8447–8457. doi:10.1128/JB.01198-07
  • Wang R, Wang F, He R, Zhang R, Yuan J. 2018. The second messenger c-di-GMP adjusts motility and promotes surface aggregation of bacteria. Biophys J. 115:2242–2249. doi:10.1016/j.bpj.2018.10.020
  • Wang S, Fleming RT, Westbrook EM, Matsumura P, McKay DB. 2006. Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. J Mol Biol. 355:798–808. doi:10.1016/j.jmb.2005.11.020
  • Wang S, Liu X, Xu X, Yang D, Wang D, Han X, Shi Y, Tian M, Ding C, Peng D, et al. 2016. Escherichia coli Type III secretion system 2 ATPase EivC is involved in the motility and virulence of avian pathogenic Escherichia coli. Front Microbiol. 7:1387. doi:10.3389/fmicb.2016.01387
  • Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T. 2005. CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol. 56:1648–1663. doi:10.1111/j.1365-2958.2005.04648.x
  • Wei B, Shin S, LaPorte D, Wolfe AJ, Romeo T. 2000. Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate. J Bacteriol. 182:1632–1640. doi:10.1128/jb.182.6.1632-1640.2000
  • Wei BL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, Romeo T. 2001. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol. 40:245–256. doi:10.1046/j.1365-2958.2001.02380.x
  • Wei Y, Lee JM, Smulski DR, LaRossa RA. 2001. Global impact of sdiA amplification revealed by comprehensive gene expression profiling of Escherichia coli. J Bacteriol. 183:2265–2272. doi:10.1128/JB.183.7.2265-2272.2001
  • Wiebe H, Gürlebeck D, Groß J, Dreck K, Pannen D, Ewers C, Wieler LH, Schnetz K. 2015. YjjQ represses transcription of flhDC and additional loci in Escherichia coli. J Bacteriol. 197:2713–2720. doi:10.1128/JB.00263-15
  • Witso IL, Benneche T, Vestby LK, Nesse LL, Lonn-Stensrud J, Scheie AA. 2014. Thiophenone and furanone in control of Escherichia coli O103:H2 virulence. Pathog Dis. 70:297–306. doi:10.1111/2049-632X.12128
  • Wood TK. 2009. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol. 11:1–15. doi:10.1111/j.1462-2920.2008.01768.x
  • Wood TK, Gonzalez Barrios AF, Herzberg M, Lee J. 2006. Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol. 72:361–367. doi:10.1007/s00253-005-0263-8
  • Worthington RJ, Richards JJ, Melander C. 2012. Small molecule control of bacterial biofilms. Org Biomol Chem. 10:7457–7474. doi:10.1039/c2ob25835h
  • Yang B, Wang S, Huang J, Yin Z, Jiang L, Hou W, Li X, Feng L. 2018. Transcriptional activator GmrA, encoded in genomic island OI-29, controls the motility of enterohemorrhagic Escherichia coli O157:H7. Front Microbiol. 9:338. doi:10.3389/fmicb.2018.00338
  • Yang H, Liu MY, Romeo T. 1996. Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product. J Bacteriol. 178:1012–1017. doi:10.1128/jb.178.4.1012-1017.1996
  • Yang X, Sha K, Xu G, Tian H, Wang X, Chen S, Wang Y, Li J, Chen J, Huang N. 2016. Subinhibitory concentrations of allicin decrease uropathogenic Escherichia coli (UPEC) biofilm formation, adhesion ability, and swimming motility. Int J Mol Sci. 17:969. doi:10.3390/ijms17070979
  • Yuan W, Yuk HG. 2019. Effects of sublethal thymol, carvacrol, and trans-cinnamaldehyde adaptation on virulence properties of Escherichia coli O157:H7. Appl Environ Microbiol. 85:e00271. doi:10.1128/AEM.00271-19
  • Zhuang Y, Chen W, Yao F, Huang Y, Zhou S, Li H, Zhang Z, Cai C, Gao Y, Peng Q. 2016. Short-term pretreatment of sub-inhibitory concentrations of gentamycin inhibits the swarming motility of Escherichia coli by down-regulating the succinate dehydrogenase gene. Cell Physiol Biochem. 39:1307–1316. doi:10.1159/000447835
  • Zlatkov N, Uhlin BE. 2019. Absence of global stress regulation in Escherichia coli promotes pathoadaptation and novel c-di-GMP-dependent metabolic capability. Sci Rep. 9:2600. doi:10.1038/s41598-019-39580-w
  • Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U. 2001. The multicellular morphotypes of Salmonella Typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol. 39:1452–1463. doi:10.1046/j.1365-2958.2001.02337.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.