Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 8
301
Views
13
CrossRef citations to date
0
Altmetric
Articles

Rhizobacterial biofilm and plant growth promoting trait enhancement by organic acids and sugars

&
Pages 990-999 | Received 09 Jun 2020, Accepted 29 Sep 2020, Published online: 04 Nov 2020

References

  • Ansari FA, Ahmad I. 2019. Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci Rep. 9:4547. doi:10.1038/s41598-019-40864-4
  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 9:1473.
  • Bharucha U, Patel K, Trivedi UB. 2013. Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric Res. 2:215–221. doi:10.1007/s40003-013-0065-7
  • Chai Y, Beauregard PB, Vlamakis H, Losick R, Kolter R, Greenberg EP. 2012. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. mBio. 3:e00184-12. doi:10.1128/mBio.00184-12
  • Chandra S, Askari K, Kumari M. 2018. Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. J Genet Eng Biotechnol. 16:581–586. doi:10.1016/j.jgeb.2018.09.001
  • Chatterjee S, Biswas N, Datta A, Dey R, Maiti P. 2014. Atomic force microscopy in biofilm study. Microscopy (Oxford). 63:269–278. doi:10.1093/jmicro/dfu013
  • Chauhan A, Guleria S, Balgir PP, Walia A, Mahajan R, Mehta P, Shirkot CK. 2017. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Braz J Microbiol. 48:294–304. doi:10.1016/j.bjm.2016.12.001
  • Cheng YT, Zhang L, He SY. 2019. Plant-microbe interactions facing environmental challenge. Cell Host Microbe. 26:183–192. doi:10.1016/j.chom.2019.07.009
  • de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJJ. 2002. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact. 15:1173–1180. doi:10.1094/MPMI.2002.15.11.1173
  • Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, Shao J, Zhang G, Shen Q, Zhang R. 2018. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol Plant Microbe Interact. 31:995–1005. doi:10.1094/MPMI-01-18-0003-R
  • Helman Y, Chernin L. 2015. Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol. 16:316–329. doi:10.1111/mpp.12180
  • Hida A, Oku S, Miura M, Matsuda H, Tajima T, Kato J. 2020. Characterization of methyl-accepting chemotaxis proteins (MCPs) for amino acids in plant-growth-promoting rhizobacterium Pseudomonas protegens CHA0 and enhancement of amino acid chemotaxis by MCP genes overexpression. Biosci Biotechnol Biochem. 84:1948–10.
  • Huang Q, Wu H, Cai P, Fein JB, Chen W. 2015. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles. Sci Rep. 5:16857. doi:10.1038/srep16857
  • James SA, Powell LC, Wright CJ. 2016. Atomic force microscopy of biofilms- imaging, interactions, and mechanics. In: Microbial biofilms - importance and applications. London: IntechOpen.
  • Jasim B, Jimtha John C, Shimil V, Jyothis M, Radhakrishnan EK. 2014. Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. J Appl Microbiol. 117:786–799. doi:10.1111/jam.12569
  • Jimtha John C, Jishma P, Arathy GB, Anisha C, Radhakrishnan EK. 2016. Identification of plant growth promoting rhizosphere Bacillus sp. WG4 antagonistic to Pythium myriotylum and its enhanced antifungal effect in association with Trichoderma. J Soil Sci Plant Nutr. 16:578–590. doi:10.4067/S0718-95162016005000026
  • John CJ, Radhakrishnan EK. 2018. Chemicobiological insight into anti-phytopathogenic properties of rhizospheric Serratia plymuthica R51. Proc Natl Acad Sci India Sect B Biol Sci. 88:1629–1635. doi:10.1007/s40011-017-0909-1
  • John Jimtha C, Jishma P, Sreelekha S, Chithra S, Radhakrishnan EK. 2017. Antifungal properties of prodigiosin producing rhizospheric Serratia sp. Rhizosphere. 3:105–108. doi:10.1016/j.rhisph.2017.02.003
  • Kumar R, Bhatia R, Kukreja K, Behl RK, Dudeja SS, Narula N. 2007. Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). J Basic Microbiol. 47:436–439. doi:10.1002/jobm.200610285
  • Leach R. 2013. Characterisation of areal surface texture. 1st ed. Berlin: Springer-Verlag.
  • Liu Y, Zhang N, Qiu M, Feng H, Vivanco JM, Shen Q, Zhang R. 2014. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiol Lett. 353:49–56. doi:10.1111/1574-6968.12406
  • Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. 2018. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 9:112.
  • Panichikkal J, Thomas R, John JC, Radhakrishnan EK. 2019. Biogenic gold nanoparticle supplementation to plant beneficial Pseudomonas monteilii was found to enhance its plant probiotic effect. Curr Microbiol. 76:503–509. doi:10.1007/s00284-019-01649-0
  • Podile AR, Vukanti RVNR, Sravani A, Kalam S, Dutta S, Durgeshwar P, Papa Rao V. 2014. Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion. Proc Ind Natl Sci Acad. 80:407. doi:10.16943/ptinsa/2014/v80i2/55117
  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP. 2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148:1547–1556. doi:10.1104/pp.108.127613
  • Sasse J, Martinoia E, Northen T. 2018. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 23:25–41. doi:10.1016/j.tplants.2017.09.003
  • Schikora A, Schenk ST, Hartmann A. 2016. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol Biol. 90:605–612. doi:10.1007/s11103-016-0457-8
  • Schuch R, Dutta S, Rani TS, Podile AR. 2013. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion. PLoS One. 8:e78369. doi:10.1371/journal.pone.0078369
  • Shrestha L, Bhattarai NR, Khanal B. 2018. Comparative evaluation of methods for the detection of biofilm formation in coagulase-negative staphylococci and correlation with antibiogram. Infect Drug Resist. 11:607–613. doi:10.2147/IDR.S159764
  • Shulse CN, Chovatia M, Agosto C, Wang G, Hamilton M, Deutsch S, Yoshikuni Y, Blow MJ, Stams AJM. 2019. Engineered root bacteria release plant-available phosphate from phytate. Appl Environ Microbiol. 85:e01210-19. doi:10.1128/AEM.01210-19
  • Singh A, Chisti Y, Banerjee UC. 2012. Stereoselective biocatalytic hydride transfer to substituted acetophenones by the yeast Metschnikowia koreensis. Process Biochem. 47:2398–2404. doi:10.1016/j.procbio.2012.09.022
  • Valquier-Flynn H, L Wilson C, E Holmes A, D Wentworth C. 2017. Growth rate of Pseudomonas aeruginosa biofilms on slippery butyl methacrylate-co-ethylene dimethacrylate (BMA-EDMA), glass and polycarbonate surfaces. J Biotechnol Biomater. 7:4. doi:10.4172/2155-952X.1000274
  • Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM, Shen Q. 2015. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep. 5:13438. doi:10.1038/srep13438
  • Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R. 2014. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil. 374:689–700. doi:10.1007/s11104-013-1915-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.