Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 8
270
Views
5
CrossRef citations to date
0
Altmetric
Articles

Characterization of the biofilm grown on 304L stainless steel in urban wastewaters: extracellular polymeric substances (EPS) and bacterial consortia

, , &
Pages 977-989 | Received 13 May 2020, Accepted 06 Oct 2020, Published online: 22 Oct 2020

References

  • Aguedo M, Waché Y, Mazoyer V, Sequeira-Le Grand A, Belin JM. 2003. Increased electron donor and electron acceptor characters enhance the adhesion between oil droplets and cells of Yarrowia lipolytica as evaluated by a new cytometric assay. J Agric Food Chem. 51:3007–3011. doi:10.1021/jf020901m
  • Conrad A, Kontro M, Keinänen MM, Cadoret A, Faure P, Mansuy-Huault L, Block J-C. 2003. Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs. Lipids. 38:1093–1105. doi:10.1007/s11745-006-1165-y
  • AWWA. 2004. Problem organisms in water: identification and treatment. Denver: American Water Works Association.
  • Bellon-Fontaine MN, Rault J, Van Oss CJ. 1996. Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloids Surf B Biointerfaces. 7:47–53. doi:10.1016/0927-7765(96)01272-6
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Brandt KK, Patel BKC, Ingvorsenl K. 2015. Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake. Int J Syst Evol Microbiol. 49:193–200.
  • Dantam J, Subbaraman LN, Jones L. 2020. Adhesion of Pseudomonas aeruginosa, Achromobacter xylosoxidans, Delftia acidovorans, Stenotrophomonas maltophilia to contact lenses under the influence of an artificial tear solution. Biofouling. 36:32–43. doi:10.1080/08927014.2019.1710832
  • Davey ME, O’toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 64:847–867. doi:10.1128/MMBR.64.4.847-867.2000
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28:350–356. doi:10.1021/ac60111a017
  • El-Bassi L, Ziadi I, Belgacem S, Bousselmi L, Akrout H. 2020. Investigations on biofilm forming bacteria involved in biocorrosion of carbon steel immerged in real wastewaters. Int Biodeterior Biodegrad. 150:104960. doi:10.1016/j.ibiod.2020.104960
  • El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA. 2010. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. PNAS 107:18127–18131.
  • Frings CS, Fendley TW, Dunn RT, Queen CA. 1972. Determination of total serum lipids by the sulfo-phospho-vanillin reaction. Clin Chem. 18:673–674. doi:10.1093/clinchem/18.7.673
  • Göker M, Teshima H, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng J-F, Tapia R, Han C, et al. 2011. Complete genome sequence of the acetate-degrading sulfate reducer Desulfobacca acetoxidans type strain (ASRB2). Stand Genomic Sci. 4:393–401. doi:10.4056/sigs.2064705
  • Gómez-Suárez C, Pasma J, van der Borden AJ, Wingender J, Flemming H-C, Busscher HJ, van der Mei HC. 2002. Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces. Microbiology (Reading). 148:1161–1169. doi:10.1099/00221287-148-4-1161
  • Guo Z, Liu T, Cheng YF, Guo N, Yin Y. 2017. Adhesion of Bacillus subtilis and Pseudoalteromonas lipolytica to steel in a seawater environment and their effects on corrosion. Colloids Surf B Biointerfaces. 157:157–165. doi:10.1016/j.colsurfb.2017.05.045
  • Hamilton WA. 1985. Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol. 39:195–217. doi:10.1146/annurev.mi.39.100185.001211
  • Henriques M, Azeredo J, Oliveira R. 2004. Adhesion of Candida albicans and Candida dubliniensis to acrylic and hydroxyapatite. Colloids Surf B Biointerfaces. 33:235–241. doi:10.1016/j.colsurfb.2003.10.012
  • Ibrahim A, Hawboldt K, Bottaro C, Khan F. 2018. Review and analysis of microbiologically influenced corrosion: the chemical environment in oil and gas facilities. Corros Eng Sci Technol. 53:549–563. doi:10.1080/1478422X.2018.1511326
  • Ivanova EP, Gorshkova NM, Sawabe T, Zhukova NV, Hayashi K, Kurilenko VV, Alexeeva Y, Buljan V, Nicolau DV, Mikhailov VV, et al. 2004. Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera marina). Int J Syst Evol Microbiol. 54:475–480. doi:10.1099/ijs.0.02654-0
  • Jia XS, Furumai H, Fang HH. 1996. Extracellular polymers of hydrogen-utilizing methanogenic and sulfate-reducing sludge. Water Res. 30:1439–1444.
  • Jin J, Guan Y. 2014. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes. Bioresour Technol. 169:387–394. doi:10.1016/j.biortech.2014.06.059.
  • Jin J, Wu G, Guan Y. 2015. Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water. Water Res. 71:207–218. doi:10.1016/j.watres.2014.12.056
  • Jin J, Wu G, Zhang Z, Guan Y. 2014a. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater. Bioresour Technol. 165:162–165. doi:10.1016/j.biortech.2014.01.117
  • Jin J, Wu G, Zhang Z, Guan Y. 2014b. Bioresource technology effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater. Bioresour Technol. 165:162–165. doi:10.1016/j.biortech.2014.01.117
  • Jorand F, Zartarian F, Thomas F, Block JC, Bottero JY, Villemin G, Urbain V, Manem J. 1995. Chemical and structural (2D) linkage between bacteria within activated sludge flocs. Water Res. 29:1639–1647. doi:10.1016/0043-1354(94)00350-G
  • Jung J, Choi N, Lee S. 2013. Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions. Food Microbiol. 34:70–80. doi:10.1016/j.fm.2012.11.008
  • Krepsky NR, Rocha Ferreira RB, Ferreira Nunes AP, Casado Lins UG, Costa e Silva Filho F, De Mattos-Guaraldi AL, Netto-dosSantos KR. 2003. Cell surface hydrophobicity and slime production of Staphylococcus epidermidis Brazilian isolates. Curr Microbiol. 46:280–286. doi:10.1007/s00284-002-3868-5
  • Libert M, Bildstein O, Esnault L, Jullien M, Sellier R. 2011. Molecular hydrogen: an abundant energy source for bacterial activity in nuclear waste repositories. Phys Chem Earth. 36:1616–1623. doi:10.1016/j.pce.2011.10.010
  • Liesack W, Finster K. 1994. Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. Int J Syst Bacteriol. 44:753–758. doi:10.1099/00207713-44-4-753
  • Liu C, Zhu L, Chen L. 2020. Mechanism of biofilm formation on a hydrophobic polytetrafluoroethylene membrane during the purification of surface water using direct contact membrane distillation (DCMD), with especial interest in the feed properties. Biofouling. 36:14–31. doi:10.1080/08927014.2019.1710136
  • Liu H, Fang HHP. 2002a. Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol. 95:249–256. doi:10.1016/S0168-1656(02)00025-1
  • Liu H, Fang HHP. 2002b. Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng. 80:806–811. doi:10.1002/bit.10432
  • Liu H, Fu C, Gu T, Zhang G, Lv Y, Wang H, Liu H. 2015. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Eval Program Plann. 100:484–495. 10.1016/j.corsci.2015.08.023.
  • Long G, Zhu P, Shen Y, Tong M. 2009. Influence of extracellular polymeric substances (EPS) on deposition kinetics of bacteria. Environ Sci Technol. 43:2308–2314. doi:10.1021/es802464v
  • Luef B, Fakra SC, Csencsits R, Wrighton KC, Williams KH, Wilkins MJ, Downing KH, Long PE, Comolli LR, Banfield JF. 2013. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth. ISME J. 7:338–350. doi:10.1038/ismej.2012.103
  • Lynch DJ, Fountain TL, Mazurkiewicz JE, Banas JA. 2007. Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. FEMS Microbiol Lett. 268:158–165. doi:10.1111/j.1574-6968.2006.00576.x
  • Moreira R, Schütz MK, Libert M, Tribollet B, Vivier V. 2014. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel : local electrochemical investigations. Bioelectrochemistry. 97:69–75. doi:10.1016/j.bioelechem.2013.10.003
  • Nielsen PH, Jahn A. 1999. Microbial extracellular polymeric substances: characterization, structure and function. In: Wingender J, Neu TR, editors. Berlin, Heidelberg: Springer; p. 49–72.
  • Pineau S, Sabot R, Quillet L, Jeannin M, Caplat C, Dupont-Morral I, Refait P. 2008. Formation of the Fe (II – III) hydroxysulphate green rust during marine corrosion of steel associated to molecular detection of dissimilatory sulphite-reductase. Corros Sci. 50:1099–1111. doi:10.1016/j.corsci.2007.11.029
  • Rabus R, Venceslau SS, Wöhlbrand L, Voordouw G, Wall JD, Pereira IAC. 2015. A post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes. Adv Microb Physiol. 66:55–321. doi:10.1016/bs.ampbs.2015.05.002.
  • Sheng G, Yu H, Li X. 2010. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv. 28:882–894. doi:10.1016/j.biotechadv.2010.08.001
  • Sorokin DY, Muyzer G. 2010. Haloalkaliphilic spore-forming sulfidogens from soda lake sediments and description of Desulfitispora alkaliphila gen. nov., sp. nov. Extremophiles. 14:313–320. doi:10.1007/s00792-010-0310-y
  • Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 24:1596–1599. doi:10.1093/molbev/msm092
  • Teixeira P, Oliveira R. 1999. Influence of surface characteristics on the adhesion of Alcaligenes denitrificans to polymeric substrates. J Adhes Sci Technol. 13:1287–1294. doi:10.1163/156856199X00190
  • Vu B, Chen M, Crawford RJ, Ivanova EP. 2009. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 14:2535–2554. doi:10.3390/molecules14072535
  • Wegner CE, Liesack W. 2017. Unexpected dominance of elusive acidobacteria in early industrial soft coal slags. Front Microbiol. 8:1023–1013. doi:10.3389/fmicb.2017.01023
  • Wightman PG, Fein JB. 2005. Iron adsorption by Bacillus subtilis bacterial cell walls. Chem Geol. 216:177–189. doi:10.1016/j.chemgeo.2004.11.008
  • Zhang C, Wen F, Cao Y. 2011. Progress in research of corrosion and protection by sulfate-reducing bacteria. Procedia Environ Sci. 10:1177–1182. doi:10.1016/j.proenv.2011.09.188 .
  • Zhang H, Tian Y, Wan J, Zhao P. 2015. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water. Appl Surf Sci. 357:236–247. doi:10.1016/j.apsusc.2015.09.021
  • Ziadi I, Akrout H, Hassairi H, El-Bassi L, Bousselmi L. 2019. Investigating the biocorrosion mechanism of 304L stainless steel in raw and treated urban wastewaters. Eng Fail Anal. 101:342–356. doi:10.1016/j.engfailanal.2019.03.028
  • Ziadi I, Alves MM, Taryba M, El-Bassi L, Hassairi H, Bousselmi L, Montemor MF, Akrout H. 2020. Microbiologically influenced corrosion mechanism of 304L stainless steel in treated urban wastewater and protective effect of silane-TiO2 coating. Bioelectrochemistry. 132:107413. doi:10.1016/j.bioelechem.2019.107413

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.