Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 8
326
Views
7
CrossRef citations to date
0
Altmetric
Articles

Benzyl isocyanate isolated from the leaves of Psidium guajava inhibits Staphylococcus aureus biofilm formation

ORCID Icon, , , , , & ORCID Icon show all
Pages 1000-1017 | Received 20 Jan 2020, Accepted 20 Oct 2020, Published online: 10 Nov 2020

References

  • Al-Sohaibani S, Murugan K. 2012. Anti-biofilm activity of Salvadora persica on cariogenic isolates of Streptococcus mutans: in vitro and molecular docking studies. Biofouling. 28:29–38. doi:10.1080/08927014.2011.647308
  • Arciola CR, Campoccia D, Ravaioli S, Montanaro L. 2015. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol. 5:1–10.
  • Arciola CR, Campoccia D, Montanaro L. 2018. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 16:397–409. doi:10.1038/s41579-018-0019-y
  • Barber KE, Smith JR, Ireland CE, Boles BR, Rose WE, Rybak MJ. 2015. Evaluation of ceftaroline alone and in combination against biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) with reduced susceptibility to daptomycin and vancomycin in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 59: 4497–4503.
  • Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM. 2017. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res. 196:44–68. doi:10.1016/j.micres.2016.12.003
  • Bassetti M, Righi E. 2013. Multidrug-resistant bacteria: what is the threat? Hematol Am Soc Hematol Educ Program. 2013:428–432. Book doi:10.1182/asheducation-2013.1.428
  • Bassler BL, Losick R. 2006. Bacterially speaking. Cell. 125:237–246. doi:10.1016/j.cell.2006.04.001
  • Beenken KE, Blevins JS, Smeltzer MS. 2003. Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun. 71:4206–4211. doi:10.1128/iai.71.7.4206-4211.2003
  • Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, Rice KC, Horswill AR, Bayles KW, Smeltzer MS. 2010. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. Plos One. 5:e10790.
  • Biswas S, Mukherjee P, Kar S, Ghosh C. 2012. Identification of the role of LuxS in the regulation of motility & the expression of the flagellar structural & functional regulators in Vibrio cholerae. Glob J Med Res. 12:2249–4618.
  • Biswas S, Mukherjee P, Manna T, Dutta K, Guchhait KC, Karmakar A, Karmakar M, Dua P, Panda AK, Ghosh C. 2019. Quorum sensing autoinducer (s) and flagellum independently mediate eps signaling in Vibrio cholerae through LuxO-independent mechanism. Microb Ecol. 77:615–616.
  • Borges A, Saavedra MJ, Simões M. 2012. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling. 28:755–767. doi:10.1080/08927014.2012.706751
  • Brown SP, Buckling A. 2008. A social life for discerning microbes. Cell. 135:600–603. doi:10.1016/j.cell.2008.10.030
  • Campana R, Casettari L, Fagioli L, Cespi M, Bonacucina G, Baffone W. 2017. Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. Int J Food Microbiol. 241:132–140. doi:10.1016/j.ijfoodmicro.2016.10.021
  • Campoccia D, Mirzaei R, Montanaro L, Arciola CR. 2019. Hijacking of immune defences by biofilms: a multifront strategy. Biofouling. 35:1055–1074. doi:10.1080/08927014.2019.1689964
  • Chen-Charpentier BM, Stanescu D. 2011. Biofilm growth on medical implants with randomness. Math Comput Model. 54:1682–1686.
  • Cheung AL, Zhang G. 2002. Global regulation of virulence determinnts in Staphylococcus aureus by the sarA protein family. Front Biosci. 7:d1825–1842.
  • Chung PY, Khanum R. 2017. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect. 50:405–410. doi:10.1016/j.jmii.2016.12.005
  • Chusri S, Phatthalung PN, Voravuthikunchai S. 2012. Anti‐biofilm activity of quercus infectoria G. Olivier against methicillin‐resistant Staphylococcus aureus. Lett Appl Microbiol. 54:511–517.
  • Coast J, Smith RD, Millar MR. 1996. Superbugs: should antimicrobial resistance be included as a cost in economic evaluation? Health Econ. 5:217–226.
  • Coelho LR, Souza RR, Ferreira FA, Guimaraes MA, Ferreira-Carvalho BT, Figueiredo AMS. 2008. agr RNAIII divergently regulates glucose-induced biofilm formation in clinical isolates of Staphylococcus aureus. Microbiology (Reading). 154:3480–3490. doi:10.1099/mic.0.2007/016014-0
  • Cohen, E., Merzendorfer, H., 2019. Extracellular sugar-based biopolymers matrices. Springer.
  • Conlon KM, Humphreys H, O'Gara JP. 2002. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol. 184:4400–4408. doi:10.1128/jb.184.16.4400-4408.2002
  • Conlon KM, Humphreys H, O'Gara JP. 2004. Inactivations of rsbU and sarA by IS256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J Bacteriol. 186:6208–6219. doi:10.1128/JB.186.18.6208-6219.2004
  • Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science. 284:1318–1322. doi:10.1126/science.284.5418.1318
  • Cox PA, Balick MJ. 1994. The ethnobotanical approach to drug discovery. Sci Am. 270:82–87.
  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Götz F. 1999. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 67:5427–5433. doi:10.1128/IAI.67.10.5427-5433.1999
  • Cue D, Lei MG, Luong TT, Kuechenmeister L, Dunman PM, O'Donnell S, Rowe S, O'Gara JP, Lee CY. 2009. Rbf promotes biofilm formation by Staphylococcus aureus via repression of icaR, a negative regulator of icaADBC. J Bacteriol. 191:6363–6373. doi:10.1128/JB.00913-09
  • Čuvalová A, Kmeť, V. 2018. Inhibition of Staphylococcus aureus biofilm by Lactobacillus supernatant and plant extracts. J Food Nutr Res. 57:70–75.
  • Dang H, Lovell CR. 2016. Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev. 80:91–138. doi:10.1128/MMBR.00037-15
  • De Casare, F., Di Matina, E., Zussman, E., Macagano, A., 2020. A 3D soil-like nanostructured fabric for the development of bacterial biofilms for agricultural and environmental uses. Environ Sci Nano. doi:10.1039/d0en00268b
  • Deep A, Chaudhary U, Gupta V. 2011. Quorum sensing and bacterial pathogenicity: from molecules to disease. J Lab Physicians. 3:4–11. doi:10.4103/0974-2727.78553
  • DeLano WL. 2002. Pymol: an open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography. 40:82–92.
  • Dewanti R, Wong AC. 1995. Influence of culture conditions on biofilm formation by Escherichia coli O157: H7. Int J Food Microbiol. 26:147–164.
  • Dhanawade NB, Kalorey DR, Srinivasan R, Barbuddhe SB, Kurkure NV. 2010. Detection of intercellular adhesion genes and biofilm production in Staphylococcus aureus isolated from bovine subclinical mastitis. Vet Res Commun. 34:81–89. doi:10.1007/s11259-009-9326-0
  • Diep BA, Chambers HF, Graber CJ, Szumowski JD, Miller LG, Han LL, Chen JH, Lin F, Lin J, Phan TH, et al. 2008. Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann Intern Med. 148:249–257.
  • Donlan RM. 2000. Role of biofilms in antimicrobial resistance. ASAIO J. 46:S47–S52. doi:10.1097/00002480-200011000-00037
  • Dua P, Karmakar A, Ghosh C. 2018. Virulence gene profiles, biofilm formation, and antimicrobial resistance of Vibrio cholerae non-O1/non-O139 bacteria isolated from West Bengal, India. Heliyon. 4:e01040 doi:10.1016/j.heliyon.2018.e01040
  • Dutta K, Shityakov S, Khalifa I, Mal A, Moulik SP, Panda AK, Ghosh C. 2018. Effects of secondary carbon supplement on biofilm-mediated biodegradation of naphthalene by mutated naphthalene 1, 2-dioxygenase encoded by Pseudomonas putida strain KD9. J Haz Mat. 357:187–197.
  • Fey PD, Olson ME. 2010. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol. 5:917–933. doi:10.2217/fmb.10.56
  • Figueiredo AMS, Ferreira FA, Beltrame CO, Cortes MF. 2017. The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in Staphylococcus aureus. Crit Rev Microbiol. 43:602–620. doi:10.1080/1040841X.2017.1282941
  • Fitzpatrick F, Humphreys H, O'gara J. 2005. The genetics of Staphylococcal biofilm formation-will a greater understanding of pathogenesis lead to better management of device-related infection? Clin Microbiol Infect. 11:967–973. doi:10.1111/j.1469-0691.2005.01274.x
  • Fitzpatrick F, Humphreys H, O'Gara JP. 2005. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol. 43:1973–1976. doi:10.1128/JCM.43.4.1973-1976.2005
  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. 2006. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 49:6177–6196. doi:10.1021/jm051256o
  • Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 176:269–275. doi:10.1128/jb.176.2.269-275.1994
  • Garba S, Igwe J, Onaolapo J, Olayinka B. 2018. Vancomycin resistant Staphylococcus aureus from clinical isolates in Zaria Metropolis, Kaduna State. Clin Infect Dis. 2(105):2.
  • Garrett TR, Bhakoo M, Zhang Z. 2008. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci. 18:1049–1056.
  • Gowrishankar S, Duncun Mosioma N, Karutha Pandian S. 2012. Coral-associated bacteria as a promising antibiofilm agent against methicillin-resistant and -Susceptible Staphylococcus aureus Biofilms. Evid Based Complement Alternat Med. 2012:862374.doi:10.1155/2012/862374
  • Grierson D, Afolayan A. 1999. Antibacterial activity of some indigenous plants used for the treatment of wounds in the Eastern Cape, South Africa. J Ethnopharmacol. 66:103–106.
  • Hebbar S, Harsha V, Shripathi V, Hegde G. 2004. Ethnomedicine of Dharwad district in Karnataka, India-plants used in oral health care. J Ethnopharmacol. 94:261–266. doi:10.1016/j.jep.2004.04.021
  • Hengge R. 2009. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol. 7:263–273. doi:10.1038/nrmicro2109
  • Jefferson KK, Pier DB, Goldmann DA, Pier GB. 2004. The teicoplanin-associated locus regulator (TcaR) and the intercellular adhesin locus regulator (IcaR) are transcriptional inhibitors of the ica locus in Staphylococcus aureus. J Bacteriol. 186:2449–2456. doi:10.1128/jb.186.8.2449-2456.2004
  • Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, Banfield JF, Thelen MP. 2010. Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol. 76:2916–2922. doi:10.1128/AEM.02289-09
  • Kaiser TDL, Pereira EM, dos Santos KRN, Maciel ELN, Schuenck RP, Nunes APF. 2013. Modification of the congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn Microbiol Infect Dis. 75:235–239. doi:10.1016/j.diagmicrobio.2012.11.014
  • Karmakar A, Dua P, Ghosh C. 2016. Biochemical and molecular analysis of Staphylococcus aureus clinical isolates from hospitalized patients. Can J Infect Dis Med Microbiol. 2016:9041636.doi:10.1155/2016/9041636
  • Karmakar A, Jana D, Dutta K, Dua P, Ghosh C. 2018. Prevalence of Panton-Valentine Leukocidin gene among community acquired Staphylococcus aureus: a real-time PCR study. J Pathog. 2018:4518541. doi:10.1155/2018/4518541
  • Kerfeld CA, Aussignargues C, Zarzycki J, Cai F, Sutter M. 2018. Bacterial microcompartments. Nat Rev Microbiol. 16:277–290. doi:10.1038/nrmicro.2018.10
  • Khanam S, Haq JA, Shamsuzzaman S, Rahman MM, Mamun KZ. 2017. Emergence of vancomycin resistant Staphylococcus aureus during hospital admission at a tertiary care hospital in Bangladesh. Bangladesh J. Infect. Dis. 3:11–16.
  • Krasowska A, Sigler K. 2014. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol. 4:112. doi:10.3389/fcimb.2014.00112.
  • Krismer B, Liebeke M, Janek D, Nega M, Rautenberg M, Hornig G, Unger C, Weidenmaier C, Lalk M, Peschel A. 2014. Nutrient limitation governs Staphylococcus aureus metabolism and niche adaptation in the human nose. PLoS Pathog. 10:e1003862.doi:10.1371/journal.ppat.1003862
  • Kuhn D, Balkis M, Chandra J, Mukherjee P, Ghannoum M. 2003. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol. 41:506–508. doi:10.1128/jcm.41.1.506-508.2003
  • Lauderdale KJ, Boles BR, Cheung AL, Horswill AR. 2009. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun. 77:1623–1635. doi:10.1128/IAI.01036-08
  • Li W, Chen H, He Z, Han C, Liu S, Li Y. 2015. Influence of surfactant and oil composition on the stability and antibacterial activity of eugenol nanoemulsions. LWT-Food Sci Technol. 62:39–47.
  • Liu J, Prindle A, Humphries J, Gabalda-Sagarra M, Asally M, Dong-Yeon DL, Ly S, Garcia-Ojalvo J, Süel GM. 2015. Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature. 523:550–554. doi:10.1038/nature14660
  • Ma R, Qiu S, Jiang Q, Sun H, Xue T, Cai G, Sun B. 2017. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus. Int J Med Microbiol. 307:257–267. doi:10.1016/j.ijmm.2017.03.003
  • Magesh H, Kumar A, Alam A, Priyam Sekar U, Sumantran VN, Vaidyanathan R. 2013. Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Ind J Exp Biol. 51:764–772.
  • Mah T-FC, O'toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9:34–39.
  • Manurung L, Riyanti E, Chemiawan E, Satari MH, Gartika M. 2017. MIC, MBIC, MBEC analyses of garlic extract (Allium sativum) from Indonesian variety against Streptococcus mutans. Braz. J. Oral Sci. 16:1–6.
  • MDowell P, Affas Z, Reynolds C, Holden MT, Wood SJ, Saint S, Cockayne A, Hill PJ, Dodd CE, Bycroft BW, et al. 2001. Structure, activity and evolution of the group I thiolactone peptide quorum-sensing system of Staphylococcus aureus . Mol Microbiol. 41:503–512. doi:10.1046/j.1365-2958.2001.02539.x
  • Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu Rev Microbiol. 55:165–199. doi:10.1146/annurev.micro.55.1.165
  • Ming D, Wang D, Cao F, Xiang H, Mu D, Cao J, Li B, Zhong L, Dong X, Zhong X, et al. 2017. Kaempferol inhibits the primary attachment phase of biofilm formation in Staphylococcus aureus. Front Microbiol. 8:2263 doi:10.3389/fmicb.2017.02263
  • Molecular operating environment (MOE). 2016. Chemical Computing Group Inc. 1010 Sherbooke St. West, Suite# 910, Montreal, QC, Canada, H3A 2R7.
  • Murugan K, Selvanayaki K, Al-Sohaibani S. 2011. Antibiofilm activity of Andrographis paniculata against cystic fibrosis clinical isolate Pseudomonas aeruginosa. World J Microbiol Biotechnol. 27:1661–1668. doi:10.1007/s11274-010-0620-3.
  • Nasr RA, Abushady HM, Hussein HS. 2012. Biofilm formation and presence of icaAD gene in clinical isolates of staphylococci. Egypt J Med Human Genet. 13(3):269–274. doi:10.1016/j.ejmhg.2012.04.007.
  • O'Gara JP. 2007. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett. 270:179–188. doi:10.1111/j.1574-6968.2007.00688.x
  • Omidi M, Firoozeh F, Saffari M, Sedaghat H, Zibaei M, Khaledi A. 2020. Ability of biofilm production and molecular analysis of spa and ica genes among clinical isolates of methicillin- resistant Staphylococcus aureus. BMC Res Notes. 13:7.
  • Packiavathy IASV, Priya S, Pandian SK, Ravi AV. 2014. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa . Food Chem. 148:453–460. doi:10.1016/j.foodchem.2012.08.002
  • Perfumo A, Banat IM, Canganella F, Marchant R. 2006. Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol. 72:132 doi:10.1007/s00253-005-0234-0
  • Poulsen LV. 1999. Microbial biofilm in food processing. LWT-Food Sci Technol. 32:321–326.
  • Quave CL, Plano LR, Pantuso T, Bennett BC. 2008. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol. 118:418–428.
  • Reichhardt C, McCrate OA, Zhou X, Lee J, Thongsomboon W, Cegelski L. 2016. Influence of the amyloid dye congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification. Anal Bioanal Chem. 408:7709–7717. doi:10.1007/s00216-016-9868-2
  • Ritchie DW. 2003. Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds. 2. Proteins. 52:98–106.
  • Rohde H, Frankenberger S, Zähringer U, Mack D. 2010. Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol. 89:103–111. doi:10.1016/j.ejcb.2009.10.005
  • Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2:a012427–a012427.
  • Sandasi M, Leonard C, Viljoen A. 2010. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett Appl Microbiol. 50:30–35. doi:10.1111/j.1472-765X.2009.02747.x
  • Sheng G-P, Yu H-Q, Li X-Y. 2010. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv. 28:882–894. doi:10.1016/j.biotechadv.2010.08.001
  • Singh PK, Parsek MR, Greenberg EP, Welsh MJ. 2002. A component of innate immunity prevents bacterial biofilm development. Nature. 417:552–555. doi:10.1038/417552a
  • Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J. 2013. Innovative strategies to overcome biofilm resistance. Bio Med Res Int. 2013:1–13.
  • Toledo-Arana A, Merino N, Vergara-Irigaray M, Débarbouillé M, Penadés JR, Lasa I. 2005. Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. J Bacteriol. 187:5318–5329. doi:10.1128/JB.187.15.5318-5329.2005
  • Trotonda MP, Manna AC, Cheung AL, Lasa I, Penadés JR. 2005. SarA positively controls bap-dependent biofilm formation in Staphylococcus aureus. J Bacteriol. 187:5790–5798. doi:10.1128/JB.187.16.5790-5798.2005
  • Valle J, Toledo‐Arana A, Berasain C, Ghigo JM, Amorena B, Penadés JR, Lasa I. 2003. SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol. 48:1075–1087. doi:10.1046/j.1365-2958.2003.03493.x
  • Vuong C, Yeh AJ, Cheung GY, Otto M. 2016. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs. 25:73–93. doi:10.1517/13543784.2016.1109077
  • Wang Q, Sun F-J, Liu Y, Xiong L-R, Xie L-L, Xia P-Y. 2010. Enhancement of biofilm formation by subinhibitory concentrations of macrolides in icaADBC-positive and -negative clinical isolates of Staphylococcus epidermidis . Antimicrob Agents Chemother. 54:2707–2711. doi:10.1128/AAC.01565-09
  • Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. 2004. Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol. 186:1838–1850. doi:10.1128/jb.186.6.1838-1850.2004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.