Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 2
213
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of two isocyanate-free urethane-based gels for antifouling applications

ORCID Icon, , , , ORCID Icon, & show all
Pages 131-144 | Received 16 Oct 2020, Accepted 28 Dec 2020, Published online: 18 Mar 2021

References

  • Abdurrahmanoglu S, Can V, Okay O. 2009. Design of high-toughness polyacrylamide gels by hydrophobic modification. Polymer. 50:5449–5455. doi:10.1016/j.polymer.2009.09.042
  • Abdurrahmanoglu S, Cilingir M, Okay O. 2011. Dodecyl methacrylate as a crosslinker in the preparation of tough polyacrylamide gels. Polymer (Guildf). 52:694–699. doi:10.1016/j.polymer.2010.12.044
  • Baker B, Murff R, Milam V. 2010. Tailoring the mechanical properties of polyacrylamide-based gels. Polymer. 51:2207–2214. doi:10.1016/j.polymer.2010.02.022
  • Boazak EM, Greene VK, Auguste DT. 2019. The effect of heterobifunctional crosslinkers on HEMA gel modulus and toughness. PLoS One. 14:e0215895. doi:10.1371/journal.pone.0215895
  • Casse F, Stafslien S, Bahr J, Daniels J, Finlay J, Callow J, Callow M. 2007. Combinatorial materials research applied to the development of new surface coatings V. Application of a spinning water-jet for the semi-high throughput assessment of the attachment strength of marine fouling algae. Biofouling. 23:121–130. doi:10.1080/08927010701189583
  • Cowling MJ, Hodgkiess T, Parr ACS, Smith MJ, Marrs SJ. 2000. An alternative approach to antifouling based on analogues of natural processes. Sci Total Environ. 258:129–137. doi:10.1016/S0048-9697(00)00513-1
  • Ekblad T, Bergström G, Ederth T, Conlan SL, Mutton R, Clare AS, Wang S, Liu Y, Zhao Q, D'Souza F, et al. 2008. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules. 9:2775–2783. doi:10.1021/bm800547m
  • Finlay JA, Krishnan S, Callow ME, Callow JA, Dong R, Asgill N, Wong K, Kramer EJ, Ober CK. 2008. Settlement of Ulva zoospores on patterned fluorinated and PEGylated monolayer surfaces. Langmuir. 24:503–510. doi:10.1021/la702275g
  • Gudipati CS, Finlay JA, Callow JA, Callow ME, Wooley KL. 2005. The antifouling and fouling-release performance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir. 21:3044–3053. doi:10.1021/la048015o
  • Ista LK, Callow ME, Finlay JA, Coleman SE, Nolasco AC, Simons RH, Callow JA, Lopez GP. 2004. Effect of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores. Appl Environ Microbiol. 70:4151–4157. doi:10.1128/AEM.70.7.4151-4157.2004
  • King RN, Andrade JD, Ma SM, Gregonis DE, Brostrom LR. 1985. Interfacial tensions at acrylic gel–water interfaces. J Colloid Interface Sci. 103:62–75. doi:10.1016/0021-9797(85)90077-3
  • Krishnan S, Ramakrishnan A, Hexemer A, Finlay JA, Sohn KE, Perry R, Ober CK, Kramer EJ, Callow ME, Callow JA, et al. 2006. Anti-biofouling properties of comblike block copolymers with amphiphilic side chains. Langmuir. 22:5075–5086. doi:10.1021/la052978l
  • Ma Y, Shi F, Ma J, Wu M, Zhang J, Gao C. 2011. Effect of PEG additive on the morphology and performance of polysulphone ultrafiltration membranes. Desalination. 272:51–58. doi:10.1016/j.desal.2010.12.054
  • Magin C, Finlay J, Clay G, Callow M, Callow J, Brennan A. 2011. Antifouling performance of cross-linked hydrogels: refinement of an attachment model. Biomacromolecules. 12:915–922. doi:10.1021/bm101229v
  • Magin CM, Cooper SP, Brennan AB. 2010. Non-toxic antifouling strategies. Mater Today. 13:36–44. doi:10.1016/S1369-7021(10)70058-4
  • Maréchal J, Hellio C. 2009. Challenges for the development of new non-toxic antifouling solutions. Int J Mol Sci. 10:4623–4637. doi:10.3390/ijms10114623
  • Mariello M, Guido F, Mastronardi VM, Donato FD, Salbini M, Brunetti V, Qualtieri A, Rizzi F, de Vittorio M. 2019. Captive-air-bubble aerophobicity measurements of antibiofouling coatings for underwater MEMS devices. Nanomater Nanotechnol. 9:1–9. doi:10.1177/1847980419862075
  • Miquelard-Garnier G, Demoures S, Creton C, Hourdet D. 2006. Synthesis and rheological behavior of new hydrophobically modified hydrogels with tunable properties. Macromolecules. 39:8128–8139. doi:10.1021/ma061361n
  • Moghadam MN, Pioletti DP. 2015. Improving hydrogels' toughness by increasing the dissipative properties of their network. J Mech Behav Biomed Mater. 41:161–167. doi:10.1016/j.jmbbm.2014.10.010
  • Nixon RM, ten Hove JB, Orozco A, Jenkins ZM, Baenen PC, Wiatt MK, Zuluaga J, Sawyer WG, Angelini TE. 2016. Mechanical properties derived from phase separation in co-polymer hydrogels. J Mech Behav Biomed Mater. 55:286–294. doi:10.1016/j.jmbbm.2015.11.003
  • Nurioglu AG, Esteves ACC, With GD. 2015. Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. J Mater Chem B. 3:6547–6570. doi:10.1039/c5tb00232j
  • Owens DK, Wendt RC. 1969. Estimation of the surface free energy of polymers. J Appl Polym Sci. 13:1741–1747. doi:10.1002/app.1969.070130815
  • Pierce E, Carmona FJ, Amirfazli A. 2008. Understanding of sliding and contact angle results in tilted plate experiments. Colloids Surf A: Physiochem Eng Aspects. 323:73–82. doi:10.1016/j.colsurfa.2007.09.032
  • Rittschof D, Orihuela B, Stafslien S, Daniels J, Chisholm B, Christianson D, Holm E. 2008. Barnacle reattachment: a tool for studying barnacle adhesion. Biofouling. 24:1–9. doi:10.1080/08927010701784920
  • Schmidt DL, Brady RF, Lam K, Schmidt DC, Chaudhury MK. 2004. Contact angle hysteresis, adhesion, and marine biofouling. Langmuir. 20:2830–2836. doi:10.1021/la035385o
  • Shibayama M, Tanaka T. 1993. Volume phase transition and related phenomena of polymer gels. In: Dušek K, editor. Responsive gels: volume transitions I. Berlin, Heidelberg: Springer; p. 1–62. (Advances in Polymer Science; vol. 109).
  • Stafslien SJ, Bahr J, Daniels J, Christianson DA, Chisholm BJ. 2011. High-throughput screening of fouling-release properties: an overview. J Adhes Sci Technol. 25:2239–2253. doi:10.1163/016942411X574934
  • Stafslien SJ, Bahr JA, Daniels JW, Vander Wal L, Nevins J, Smith J, Schiele K, Chisholm B. 2007. Combinatorial materials research applied to the development of new surface coatings VI: an automated spinning water jet apparatus for the high-throughput characterization of fouling-release marine coatings. Rev Sci Instrum. 78:072204. doi:10.1063/1.2755965
  • Stafslien SJ, Daniels J, Bahr J, Chisholm B, Ekin A, Webster D, Orihuela B, Rittschof D. 2012. An improved laboratory reattachment method for the rapid assessment of barnacle adhesion strength to fouling-release marine coatings. J Coat Technol Res. 9:651–665. doi:10.1007/s11998-012-9409-7
  • Sundaram HS, Cho Y, Dimitriou MD, Finlay JA, Cone G, Williams S, Handlin D, Gatto J, Callow ME, Callow JA, et al. 2011. Fluorinated amphiphilic polymers and their blends for fouling-release applications: the benefits of a triblock copolymer surface. ACS Appl Mater Interfaces. 3:3366–3374. doi:10.1021/am200529u
  • Tan J, McClung WC, Brash JL. 2008. Non-fouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: protein adsorption on PEO-copolymer/polyurethane blends. J Biomed Mater Res A. 85:873–880. doi:10.1002/jbm.a.31554
  • Thomas K. 2009. The use of broad-spectrum organic biocides in marine antifouling paint. Advances in marine antifouling coatings and technologies. Cambridge (UK): Elsevier Ltd; p. 522–553.
  • Thomas KV, Brooks S. 2010. The environmental fate and effects of antifouling paint biocides. Biofouling. 26:73–88. doi:10.1080/08927010903216564
  • Tiab D, Donaldson EC. 2004. Wettability. Petrophysics. 4th ed. Chapter 6. Oxford (UK): Elsevier Ltd.
  • Ucar IO, Cansoy CE, Erbil HY, Pettitt ME, Callow ME, Callow JA. 2010. Effect of contact angle hysteresis on the removal of the sporelings of the green alga Ulva from the fouling-release coatings synthesized from polyolefin polymers. Biointerphases. 5:75–84. doi:10.1116/1.3483467
  • Vignesh V, Nguyen TH, Vanderwal L, Stafslien S, Brennan AB. 2021. Tough amphiphilic antifouling gel coating based on acrylamide, fluoromethacrylate and non-isocyanate urethane dimethacylate crosslinker. Biofouling. doi:10.1080/08927014.2020.1870110
  • Wang J, Wu Y, Cao Y, Li G, Liao Y. 2020. Influence of surface roughness on contact angle hysteresis and spreading work. Colloid Polym Sci. 298:1107–1112. doi:10.1007/s00396-020-04680-x
  • Weinman CJ, Krishnan S, Park D, Paik MY, Wong Y, Fischer DA, Handlin DL, Kowalke GL, Wendt DE, Sohn KE. 2007. Antifouling block copolymer surfaces that resist settlement of barnacle larvae. Polym Prepr (Am Chem Soc Div Polym Chem). 96:597–598.
  • Wu G, Li C-C, Jiang X-H, Yu L-M. 2016. Highly efficient antifouling property based on self-generating gel layer of polyacrylamide coatings. J Appl Polym Sci. 133:44111. doi:10.1002/app.44111
  • Yang S, Zhang S-P, Winnik F-M, Mwale F, Gong Y-K. 2008. Group reorientation and migration of amphiphilic polymer bearing phosphorylcholine functionalities on surface of cellular membrane mimicking coating. J Biomed Mater Res A. 84:837–841. doi:10.1002/jbm.a.31418
  • Zhu X, Guo S, Jańczewski D, Velandia FJP, Teo SL-M, Vancso GJ. 2014. Multilayers of fluorinated amphiphilic polyions for marine fouling prevention. Langmuir. 30:288–296. doi:10.1021/la404300r

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.