Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 1
303
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Anti-biofouling properties of poly(dimethyl siloxane) with RAFT photopolymerized acrylate/methacrylate surface grafts against model marine organisms

ORCID Icon, , , , ORCID Icon &
Pages 78-95 | Received 30 Aug 2020, Accepted 07 Jan 2021, Published online: 24 Jan 2021

References

  • Aldred N, Li G, Gao Y, Clare AS, Jiang S. 2010. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings. Biofouling. 26:673–683. doi:10.1080/08927014.2010.506677
  • Barlow DE, Dickinson GH, Orihuela B, Kulp JL, Rittschof D, Wahl KJ. 2010. Characterization of the adhesive plaque of the barnacle Balanus amphitrite: amyloid-like nanofibrils are a major component. Langmuir. 26:6549–6556. doi:10.1021/la9041309
  • Bauer S, Arpa-Sance MP, Finlay JA, Callow ME, Callow JA, Rosenhahn A. 2013. Adhesion of marine fouling organisms on hydrophilic and amphiphilic polysaccharides. Langmuir. 29:4039–4047. doi:10.1021/la3038022
  • Bauer S, Finlay JA, Thomé I, Nolte K, Franco SC, Ralston E, Swain GE, Clare AS, Rosenhahn A. 2016. Attachment of algal cells to zwitterionic self-assembled monolayers comprised of different anionic compounds. Langmuir. 32:5663–5671. doi:10.1021/acs.langmuir.6b00839
  • Berglin M, Gatenholm P. 2003. The barnacle adhesive plaque: morphological and chemical differences as a response to substrate properties. Colloids Surf B Biointerfaces. 28:107–117. doi:10.1016/S0927-7765(02)00149-2
  • Bodkhe RB, Stafslien SJ, Cilz N, Daniels J, Thompson SEM, Callow ME, Callow JA, Webster DC. 2012. Polyurethanes with amphiphilic surfaces made using telechelic functional PDMS having orthogonal acid functional groups. Prog Org Coatings. 75:38–48. doi:10.1016/j.porgcoat.2012.03.006
  • Burden DK, Barlow DE, Spillmann CM, Orihuela B, Rittschof D, Everett RK, Wahl KJ. 2012. Barnacle Balanus amphitrite adheres by a stepwise cementing process. Langmuir. 28:13364–13372. doi:10.1021/la301695m
  • Callow ME, Callow JA, Ista LK, Coleman SE, Nolasco AC, Lopez GP. 2000. Use of self-assembled monolayers of different wettabilities to study surface selection and primary adhesion processes of green algal (Enteromorpha) zoospores). Appl Environ Microbiol. 66:3249–3254. doi:10.1128/aem.66.8.3249-3254.2000
  • Callow ME, Callow J. a, Pickett-Heaps JD, Wetherbee R. 1997. Primary adhesion of Enteromorpha (Chlorophyta, Ulvales) propagules- quantitative settlement studies and video microscopy. J Phycol. 33:938–947. doi:10.1111/j.0022-3646.1997.00938.x
  • Callow JA, Osborne MP, Callow ME, Baker F, Donald AM. 2003. Use of environmental scanning electron microscopy to image the spore adhesive of the marine alga Enteromorpha in its natural hydrated state. Colloids Surf B Biointerfaces. 27:315–321. doi:10.1016/S0927-7765(02)00094-2
  • Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brennan AB. 2006. Engineered antifouling microtopographies-correlating wettability with cell attachment. Biofouling. 22:11–21. doi:10.1080/08927010500484854
  • Carve M, Scardino A, Shimeta J. 2019. Effects of surface texture and interrelated properties on marine biofouling: a systematic review. Biofouling. 35:597–617. doi:10.1080/08927014.2019.1636036
  • Cassé F, Stafslien SJ, Bahr JA, Daniels J, Finlay JA, Callow JA, Callow ME. 2007. Combinatorial materials research applied to the development of new surface coatings V. Application of a spinning water-jet for the semi-high throughput assessment of the attachment strength of marine fouling algae. Biofouling. 23:121–130. doi:10.1080/08927010701189583
  • Chiefari J, Chong YK(B), Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, et al. 1998. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules. 31:5559–5562. doi:10.1021/ma9804951
  • Chiovitti A, Bacic A, Burke J, Wetherbee R. 2003. Heterogeneous xylose-rich glycans are associated with extracellular glycoproteins from the biofouling diatom Craspedostauros australis (Bacillariophyceae). Eur J Phycol. 38:351–360. doi:10.1080/09670260310001612637
  • Dafforn KA, Lewis JA, Johnston EL. 2011. Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull. 62:453–465. doi:10.1016/j.marpolbul.2011.01.012
  • Decho AW, Gutierrez T. 2017. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol. 8:1–28. doi:10.3389/fmicb.2017.00922
  • Decker JT, Kirschner CM, Long CJ, Finlay JA, Callow ME, Callow JA, Brennan AB. 2013. Engineered antifouling microtopographies: an energetic model that predicts cell attachment. Langmuir. 29:13023–13030. doi:10.1021/la402952u
  • Dickinson GH, Vega IE, Wahl KJ, Orihuela B, Beyley V, Rodriguez EN, Everett RK, Bonaventura J, Rittschof D. 2009. Barnacle cement: a polymerization model based on evolutionary concepts. J Exp Biol. 212:3499–3510. doi:10.1242/jeb.029884
  • Ekblad T, Bergström G, Ederth T, Conlan SL, Mutton R, Clare AS, Wang S, Liu Y, Zhao Q, D'Souza F, et al. 2008. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules. 9:2775–2783. doi:10.1021/bm800547m
  • Finlay JA, Callow ME, Ista LK, Lopez GP, Callow JA. 2002. The influence of surface wettability on the adhesion strength of settled spores of the green alga Enteromorpha and the diatom Amphora. Integr Comp Biol. 42:1116–1122. doi:10.1093/icb/42.6.1116
  • Finlay JA, Schultz MP, Cone G, Callow ME, Callow JA. 2013. A novel biofilm channel for evaluating the adhesion of diatoms to non-biocidal coatings. Biofouling. 29:401–411. doi:10.1080/08927014.2013.777046
  • Flemming H-C, Sriyutha Murthy P, Venkatesan R, Cooksey KE. 2009. Marine and industrial biofouling. Berlin Heidelberg (Germany): Springer Series on Biofilms.
  • Galhenage TP, Webster DC, Moreira AMS, Burgett RJ, Stafslien SJ, Vanderwal L, Finlay JA, Franco SC, Clare AS. 2017. Poly(ethylene) glycol-modified, amphiphilic, siloxane–polyurethane coatings and their performance as fouling-release surfaces. J Coat Technol Res. 14:307–322. doi:10.1007/s11998-016-9862-9
  • Gatley-Montross CM, Finlay JA, Aldred N, Cassady H, Destino JF, Orihuela B, Hickner MA, Clare AS, Rittschof D, Holm ER, et al. 2017. Multivariate analysis of attachment of biofouling organisms in response to material surface characteristics. Biointerphases. 12:051003. doi:10.1116/1.5008988
  • Grozea CM, Walker GC. 2009. Approaches in designing non-toxic polymer surfaces to deter marine biofouling. Soft Matter. 5:4088–4100. doi:10.1039/b910899h
  • Holland R, Dugdale TM, Wetherbee R, Brennan AB, Finlay JA, Callow JA, Callow ME. 2004. Adhesion and motility of fouling diatoms on a silicone elastomer. Biofouling. 20:323–329. doi:10.1080/08927010400029031
  • Huang S, Hadfield MG. 2003. Composition and density of bacterial biofilms determine larval settlement of the polychaete Hydroides elegans. Mar Ecol Prog Ser. 260:161–172. doi:10.3354/meps260161
  • Humphrey AJ, Finlay JA, Pettitt ME, Stanley MS, Callow JA. 2005. Effect of Ellman’s reagent and dithiothreitol on the curing of the spore adhesive glycoprotein of the green alga Ulva. J Adhes. 81:791–803. doi:10.1080/00218460500188952
  • Ista LK, Callow ME, Finlay JA, Coleman SE, Nolasco AC, Simons RH, Callow JA, Lopez GP. 2004. Effect of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores. Appl Environ Microbiol. 70:4151–4157. doi:10.1128/AEM.70.7.4151-4157.2004
  • Johansen JE, Nielsen P, Sjøholm C. 1999. Description of Cellulophaga baltica gen. nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [Cytophaga] lytica to Cellulophaga lytica gen. nov., comb. nov. Int J Syst Bacteriol. 49:1231–1240. doi:10.1099/00207713-49-3-1231
  • Joint I, Tait K, Callow ME, Callow JA, Milton D, Williams P, Cámara M. 2002. Cell-to-cell communication across the prokaryote-eukaryote boundary. Science. 298:1207. doi:10.1126/science.1077075
  • Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, Hexemer A, Sohn KE, Kramer EJ, Fischer DA. 2006. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva. Biomacromolecules. 7:1449–1462. doi:10.1021/bm0509826
  • Krishnan S, Weinman CJ, Ober CK. 2008. Advances in polymers for anti-biofouling surfaces. J Mater Chem. 18:3405–3413. doi:10.1039/b801491d
  • Kuliasha CA, Fedderwitz RL, Calvo PR, Sumerlin BS, Brennan AB. 2018. Engineering the surface properties of poly(dimethylsiloxane) utilizing aqueous RAFT photografting of acrylate/methacrylate monomers. Macromolecules. 51:306–317. doi:10.1021/acs.macromol.7b02575
  • Kuliasha CA, Fedderwitz RL, Finlay JA, Franco SC, Clare AS, Brennan AB. 2020. Engineered chemical nanotopographies: Reversible Addition-Fragmentation Chain-Transfer mediated grafting of anisotropic poly(acrylamide) patterns on poly(dimethylsiloxane) to modulate marine biofouling. Langmuir. 36:379–387. doi:10.1021/acs.langmuir.9b03117
  • Kuliasha CA, Finlay JA, Franco SC, Clare AS, Stafslien SJ, Brennan AB. 2017. Marine anti-biofouling efficacy of amphiphilic poly(coacrylate) grafted PDMSe: effect of graft molecular weight. Biofouling. 33:252–267. doi:10.1021/acs.macromol.7b02575
  • Lai JT, Filla D, Shea R. 2002. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules. 35:6754–6756. doi:10.1021/ma020362m
  • Lejars M, Margaillan A, Bressy C. 2012. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev. 112:4347–4390. doi:10.1021/cr200350v
  • Lim C-S, Dickinson GH, Sommer S, Teo SL-M, Bodkhe RB, Webster DC, Loo YY. 2015. A small-scale waterjet test method for screening novel foul-release coatings. J Coat Technol Res. 12:533–542. doi:10.1007/s11998-014-9648-x
  • Lind JL, Heimann K, Miller EA, Vliet CV, Hoogenraad J, Wetherbee R, Lind JL, Heimann K, Miller EA, Vliet CV, et al. 1997. Substratum adhesion and gliding in a diatom are mediated by extracellular proteoglycans. Planta. 203:213–221. doi:10.1007/s004250050184
  • Majumdar P, Crowley E, Htet M, Stafslien SJ, Daniels J, Vanderwal L, Chisholm BJ. 2011. Combinatorial materials research applied to the development of new surface coatings XV: an investigation of polysiloxane anti-fouling/fouling-release coatings containing tethered quaternary ammonium salt groups. ACS Comb Sci. 13:298–309. doi:10.1021/co200004m
  • Majumdar P, Lee E, Patel N, Stafslien SJ, Daniels J, Chisholm BJ. 2008. Development of environmentally friendly, antifouling coatings based on tethered quaternary ammonium salts in a crosslinked polydimethylsiloxane matrix. J Coat Technol Res. 5:405–417. doi:10.1007/s11998-008-9098-4
  • Majumdar P, Lee E, Patel N, Ward K, Stafslien SJ, Daniels J, Chisholm BJ, Boudjouk P, Callow ME, Callow JA, et al. 2008. Combinatorial materials research applied to the development of new surface coatings IX: an investigation of novel antifouling/fouling-release coatings containing quaternary ammonium salt groups. Biofouling. 24:185–200. doi:10.1080/08927010801894660
  • Mieszkin S, Martin-Tanchereau P, Callow ME, Callow JA. 2012. Effect of bacterial biofilms formed on fouling-release coatings from natural seawater and Cobetia marina, on the adhesion of two marine algae. Biofouling. 28:953–968. doi:10.1080/08927014.2012.723696
  • Mineur F, Johnson MP, Maggs CA, Stegenga H. 2007. Hull fouling on commercial ships as a vector of macroalgal introduction. Mar Biol. 151:1299–1307. doi:10.1007/s00227-006-0567-y
  • Molino PJ, Wetherbee R. 2008. The biology of biofouling diatoms and their role in the development of microbial slimes. Biofouling. 24:365–379. doi:10.1080/08927010802254583
  • Murosaki T, Noguchi T, Kakugo A, Putra A, Kurokawa T, Furukawa H, Osada Y, Gong JP, Nogata Y, Matsumura K, et al. 2009. Antifouling activity of synthetic polymer gels against cyprids of the barnacle (Balanus amphitrite) in vitro. Biofouling. 25:313–320. doi:10.1080/08927010902730516
  • Owens DK, Wendt RC. 1969. Estimation of the surface free energy of polymers. J Appl Polym Sci. 13:1741–1747. doi:10.1002/app.1969.070130815
  • Piola RF, Dafforn KA, Johnston EL. 2009. The influence of antifouling practices on marine invasions. Biofouling. 25:633–644. doi:10.1080/08927010903063065
  • Ralston E, Swain G. 2009. Bioinspiration - the solution for biofouling control? Bioinspiration Biomimetics. 49: 1–9. doi:10.1088/1748-3182/4/1/015007
  • Ramsay DB, Dickinson GH, Orihuela B, Rittschof D, Wahl KJ. 2008. Base plate mechanics of the barnacle Balanus amphitrite (=Amphibalanus amphitrite). Biofouling. 24:109–118. doi:10.1080/08927010701882112
  • Rasmussen K, Willemsen PR, Østgaard K. 2002. Barnacle settlement on hydrogels. Biofouling. 18:177–191. doi:10.1080/08927010220152038
  • Rittschof D, Orihuela B, Stafslien S, Daniels J, Christianson D, Chisholm B, Holm E. 2008. Barnacle reattachment: a tool for studying barnacle adhesion. Biofouling. 24:1–9. doi:10.1080/08927010701784920
  • Rosenhahn A, Finlay JA, Pettit ME, Ward A, Wirges W, Gerhard R, Callow ME, Grunze M, Callow JA. 2009. Zeta potential of motile spores of the green alga Ulva linza and the influence of electrostatic interactions on spore settlement and adhesion strength. Biointerphases. 4:7–11. doi:10.1116/1.3110182
  • Schmidt M, Cavaco A, Gierlinger N, Aldred N, Fratzl P, Grunze M, Clare AS. 2009. In situ imaging of barnacle (Balanus amphitrite) cyprid cement using Confocal Raman Microscopy. J Adhes. 85:139–151. doi:10.1080/00218460902782279
  • Schultz MP. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling. 23:331–341. doi:10.1080/08927010701461974
  • Sommer S, Ekin A, Webster DC, Stafslien SJ, Daniels J, VanderWal LJ, Thompson SEM, Callow ME, Callow JA. 2010. A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane) (PDMS) macromers. Biofouling. 26:961–972. doi:10.1080/08927014.2010.531272
  • Stafslien SJ, Bahr JA, Daniels JW, Wal LV, Nevins J, Smith J, Schiele K, Chisholm B. 2007. Combinatorial materials research applied to the development of new surface coatings VI: an automated spinning water jet apparatus for the high-throughput characterization of fouling-release marine coatings. Rev Sci Instrum. 78: 1–6.doi:10.1063/1.2755965
  • Stafslien SJ, Bahr JA, Feser JM, Weisz JC, Chisholm BJ, Ready TE, Boudjouk P. 2006. Combinatorial materials research applied to the development of new surface coatings I: a multiwell plate screening method for the high-throughput assessment of bacterial biofilm retention on surfaces. J Comb Chem. 8:156–162. doi:10.1021/cc050047m
  • Stafslien S, Daniels J, Bahr J, Chisholm B, Ekin A, Webster D, Orihuela B, Rittschof D. 2012. An improved laboratory reattachment method for the rapid assessment of adult barnacle adhesion strength to fouling-release marine coatings. J Coat Technol Res. 9:651–665. doi:10.1007/s11998-012-9409-7
  • Stafslien SJ, Daniels J, Mayo B, Christianson D, Chisholm B, Ekin A, Webster D, Swain G. 2007. Combinatorial materials research applied to the development of new surface coatings IV. A high-throughput bacterial biofilm retention and retraction assay for screening fouling-release performance of coatings. Biofouling. 23:45–54. doi:10.1080/08927010601137856
  • Stanley MS, Callow ME, Callow JA. 1999. Monoclonal antibodies to adhesive cell coat glycoproteins secreted by zoospores of the green alga Enteromorpha. Planta. 210:61–71. doi:10.1007/s004250050654
  • Statz A, Finlay J, Dalsin J, Callow M, Callow JA, Messersmith PB. 2006. Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels. Biofouling. 22:391–399. doi:10.1080/08927010601004890
  • Sullan RMA, Gunari N, Tanur AE, Chan Y, Dickinson GH, Orihuela B, Rittschof D, Walker GC. 2009. Nanoscale structures and mechanics of barnacle cement. Biofouling. 25:263–275. doi:10.1080/08927010802688095
  • Sundaram HS, Cho Y, Dimitriou MD, Weinman CJ, Finlay J, Cone G, E, Callow M, A, Callow J, J, Kramer E, Ober CK. 2011. Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications. Biofouling. 27:589–601. doi:10.1080/08927014.2011.587662
  • Swain G, Schultz M. 1996. The testing and evaluation of non-toxic antifouling coatings . Biofouling. 10:187–197. doi:10.1080/08927019609386279
  • Townsin RL. 2003. The ship hull fouling penalty. Biofouling. 19:9–15. doi:10.1080/0892701031000088535
  • Vellwock AE, Fu J, Meng Y, Thiyagarajan V, Yao H. 2019. A data-driven approach to predicting the attachment density of biofouling organisms. Biofouling. 35:832–839. doi:10.1080/08927014.2019.1667982
  • Walker G. 1972. The biochemical composition of the cement of two barnacle species, Balanus hameri and Balanus crenatus. J Mar Biol Ass. 52:429–435. doi:10.1017/S0025315400018786
  • Weinman CJ, Finlay JA, Park D, Paik MY, Krishnan S, Sundaram HS, Dimitriou M, Sohn KE, Callow ME, Callow JA, et al. 2009. ABC Triblock surface active block copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marine antifouling/fouling-release applications. Langmuir. 25:12266–12274. doi:10.1021/la901654q
  • Wetherbee R, Lind JL, Burke J, Quatrano RS. 1998. The first kiss: establishment and control of initial adhesion by raphid diatoms. J Phycol. 34:9–15. doi:10.1046/j.1529-8817.1998.340009.x
  • Yandi W, Mieszkin S, di Fino A, Martin-Tanchereau P, Callow ME, Callow JA, Tyson L, Clare AS, Ederth T. 2016. Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling. Biofouling. 32:609–625. doi:10.1080/08927014.2016.1170816
  • Zargiel KA, Coogan JS, Swain GW. 2011. Diatom community structure on commercially available ship hull coatings. Biofouling. 27:955–965. doi:10.1080/08927014.2011.618268
  • Zhang M, Jiang S, Tanuwidjaja D, Voutchkov N, Hoek EMV, Cai B. 2011. Composition and variability of biofouling organisms in seawater reverse osmosis desalination plants. Appl Environ Microbiol. 77:4390–4398. doi:10.1128/AEM.00122-11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.