Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 1
232
Views
11
CrossRef citations to date
0
Altmetric
Research Article

A sugarcane cystatin (CaneCPI-5) alters microcosm biofilm formation and reduces dental caries

, , , , , , , ORCID Icon, , ORCID Icon, & show all
Pages 109-116 | Received 03 Sep 2020, Accepted 19 Jan 2021, Published online: 15 Feb 2021

References

  • Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 43:5721–5732. doi:10.1128/JCM.43.11.5721-5732.2005
  • Ahmed SA, Gogal RM, Jr., Walsh JE. 1994. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods. 170:211–224. doi:10.1016/0022-1759(94)90396-4
  • Alonso B, Cruces R, Perez A, Sanchez-Carrillo C, Guembe M. 2017. Comparison of the XTT and resazurin assays for quantification of the metabolic activity of Staphylococcus aureus biofilm. J Microbiol Methods. 139:135–137. doi:10.1016/j.mimet.2017.06.004
  • Angmar B, Carlstrom D, Glas JE. 1963. Studies on the ultrastructure of dental enamel. IV. The mineralization of normal human enamel. J Ultrastruct Res. 8:12–23. doi:10.1016/s0022-5320(63)80017-9
  • Ayoub HM, Gregory RL, Tang Q, Lippert F. 2020. Influence of salivary conditioning and sucrose concentration on biofilm-mediated enamel demineralization. J Appl Oral Sci. 28:e20190501. doi:10.1590/1678-7757-2019-0501
  • Braga AS, Pires JG, Magalhaes AC. 2018. Effect of a mouthrinse containing Malva sylvestris on the viability and activity of microcosm biofilm and on enamel demineralization compared to known antimicrobials mouthrinses. Biofouling. 34:252–261. doi:10.1080/08927014.2018.1428957
  • Carvalho TS, Araújo TT, Ventura TM, Dionizio A, Câmara JVF, Moraes SM, Pelá VT, Martini T, Leme JC, Derbotolli ALB, et al. 2020a. Acquired pellicle protein-based enginering protects against erosive demineralization. J Dent. 102:103478. doi:10.1016/j.jdent.2020.103478
  • Carvalho TS, Halter JE, Mucolli D, Lussi A, Eick S, Baumann T. 2020b. Pellicle modification with casein and mucin does not promote in vitro bacterial biofilm formation. Oral Health Prev Dent. 18:475–483. doi:10.3290/j.ohpd.a43351
  • Cavini IA, de Oliveira-Silva R, de Almeida Marques I, Kalbitzer HR, Munte CE. 2013. Chemical shift assignments of the canecystatin-1 from Saccharum officinarum. Biomol NMR Assign. 7:163–165. doi:10.1007/s12104-012-9401-2
  • Cheaib Z, Rakmathulina E, Lussi A, Eick S. 2015. Impact of acquired pellicle modification on adhesion of early colonizers. Caries Res. 49:626–632. doi:10.1159/000442169
  • Cheng L, Weir MD, Zhang K, Wu EJ, Xu SM, Zhou X, Xu HH. 2012. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium. Dent Mater. 28:853–862. doi:10.1016/j.dental.2012.04.024
  • Delecrode TR, Siqueira WL, Zaidan FC, Bellini MR, Moffa EB, Mussi MC, Xiao Y, Buzalaf MA. 2015. Identification of acid-resistant proteins in acquired enamel pellicle. J Dent. 43:1470–1475. doi:10.1016/j.jdent.2015.10.009
  • Dos Santos DMS, Pires JG, Silva AB, Salomao PMA, Buzalaf MAR, Magalhaes AC. 2019. Protective effect of 4% titanium tetrafluoride varnish on dentin demineralization using a microcosm biofilm model. Caries Res. 53:576–583. doi:10.1159/000499317
  • Gironda CPV, Henrique Da Silva F, Pessan J, Delbem A, Afonso Rabelo Buzalaf M. 2020. Surface free energy of enamel treated with CaneCPI-5 or hemoglobin. J Dent Res. 99A:0675.
  • Hannig M, Joiner A. 2006. The structure, function and properties of the acquired pellicle. Monogr Oral Sci. 19:29–64. doi:10.1159/000090585
  • Hojo K, Nagaoka S, Ohshima T, Maeda N. 2009. Bacterial interactions in dental biofilm development. J Dent Res. 88:982–990. doi:10.1177/0022034509346811
  • Hope CK, Wilson M. 2003. Measuring the thickness of an outer layer of viable bacteria in an oral biofilm by viability mapping. J Microbiol Methods. 54:403–410. doi:10.1016/S0167-7012(03)00085-X
  • Jayme CC, de Paula LB, Rezende N, Calori IR, Franchi LP, Tedesco AC. 2017. DNA polymeric films as a support for cell growth as a new material for regenerative medicine: compatibility and applicability. Exp Cell Res. 360:404–412. doi:10.1016/j.yexcr.2017.09.033
  • Jiang LM, Hoogenkamp MA, van der Sluis LW, Wesselink PR, Crielaard W, Deng DM. 2011. Resazurin metabolism assay for root canal disinfectant evaluation on dual-species biofilms. J Endod. 37:31–35. doi:10.1016/j.joen.2010.09.007
  • Jones CG. 1997. Chlorhexidine: is it still the gold standard? Periodontol 2000. 15:55–62. doi:10.1111/j.1600-0757.1997.tb00105.x
  • Kinniment SL, Wimpenny JW, Adams D, Marsh PD. 1996. Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter. Microbiology. 142:631–638. doi:10.1099/13500872-142-3-631
  • Klafke GB, Borsuk S, Goncales RA, Arruda FV, Carneiro VA, Teixeira EH, Coelho da Silva AL, Cavada BS, Dellagostin OA, Pinto LS. 2013. Inhibition of initial adhesion of oral bacteria through a lectin from Bauhinia variegata L. var. variegata expressed in Escherichia coli. J Appl Microbiol. 115:1222–1230. doi:10.1111/jam.12318
  • Klein MI, Hwang G, Santos PH, Campanella OH, Koo H. 2015. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol. 5:10. doi:10.3389/fcimb.2015.00010
  • Kolenbrander PE. 2000. Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol. 54:413–437. doi:10.1146/annurev.micro.54.1.413
  • Lamarque GCC, Mendez DAC, Gutierrez E, Dionisio EJ, Machado M, Oliveira TM, Rios D, Cruvinel T. 2019. Could chlorhexidine be an adequate positive control for antimicrobial photodynamic therapy in- in vitro studies? Photodiagn Photodyn Ther. 25:58–62. doi:10.1016/j.pdpdt.2018.11.004
  • Lendenmann U, Grogan J, Oppenheim FG. 2000. Saliva and dental pellicle-a review. Adv Dent Res. 14:22–28. doi:10.1177/08959374000140010301
  • Marsh PD. 2003. Are dental diseases examples of ecological catastrophes? Microbiology (Reading). 149:279–294. doi:10.1099/mic.0.26082-0
  • Marsh PD. 2004. Dental plaque as a microbial biofilm. Caries Res. 38:204–211. doi:10.1159/000077756
  • Marsh PD, Zaura E. 2017. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 44(Suppl 18):S12–S22. doi:10.1111/jcpe.12679
  • Mattos-Graner RO, Smith DJ, King WF, Mayer MP. 2000. Water-insoluble glucan synthesis by mutans streptococcal strains correlates with caries incidence in 12- to 30-month-old children. J Dent Res. 79:1371–1377. doi:10.1177/00220345000790060401
  • Paes Leme AF, Koo H, Bellato CM, Bedi G, Cury JA. 2006. The role of sucrose in cariogenic dental biofilm formation-new insight. J Dent Res. 85:878–887. doi:10.1177/154405910608501002
  • Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreno CC, Kearns C, et al. 2019. Oral diseases: a global public health challenge. Lancet. 394:249–260. doi:10.1016/S0140-6736(19)31146-8
  • Prabst K, Engelhardt H, Ringgeler S, Hubner H. 2017. Basic colorimetric proliferation assays: MTT, WST, and resazurin. Methods Mol Biol. 1601:1–17. doi:10.1007/978-1-4939-6960-9_1
  • Pratten J, Wilson M, Spratt DA. 2003. Characterization of in vitro oral bacterial biofilms by traditional and molecular methods. Oral Microbiol Immunol. 18:45–49. doi:10.1034/j.1399-302x.2003.180107.x
  • Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L, et al. 2004. Cell viability assays. In: Sittampalam GS, Grossman A, Brimacombe K, editors. Assay guidance manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences.
  • Santiago AC, Khan ZN, Miguel MC, Gironda CC, Soares-Costa A, Pela VT, Leite AL, Edwardson JM, Buzalaf MAR, Henrique-Silva F. 2017. A new sugarcane cystatin strongly binds to dental enamel and reduces erosion. J Dent Res. 96:1051–1057. doi:10.1177/0022034517712981
  • Shu M, Browngardt CM, Chen YY, Burne RA. 2003. Role of urease enzymes in stability of a 10-species oral biofilm consortium cultivated in a constant-depth film fermenter. Infect Immun. 71:7188–7192. doi:10.1128/iai.71.12.7188-7192.2003
  • Socransky SS, Haffajee AD. 2002. Dental biofilms: difficult therapeutic targets. Periodontol 2000. 28:12–55. doi:10.1034/j.1600-0757.2002.280102.x
  • Souza BM, Fernandes Neto C, Salomao PMA, Vasconcelos L, Andrade FB, Magalhaes AC. 2018. Analysis of the antimicrobial and anti-caries effects of TiF4 varnish under microcosm biofilm formed on enamel. J Appl Oral Sci. 26:e20170304. doi:10.1590/1678-7757-2017-0304
  • Takahashi N, Nyvad B. 2011. The role of bacteria in the caries process: ecological perspectives. J Dent Res. 90:294–303. doi:10.1177/0022034510379602
  • Valadares NF, de Oliveira-Silva R, Cavini IA, Marques I. d A, Pereira HD, Soares-Costa A, Henrique-Silva F, Kalbitzer HR, Munte CE, Garratt RC. 2013. X-ray crystallography and NMR studies of domain-swapped canecystatin-1. Febs J. 280:1028–1038. doi:10.1111/febs.12095
  • Valm AM, Mark Welch JL, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, Dewhirst FE, Borisy GG. 2011. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci USA. 108:4152–4157. doi:10.1073/pnas.1101134108
  • van der Mei HC, Rustema-Abbing M, de Vries J, Busscher HJ. 2008. Bond strengthening in oral bacterial adhesion to salivary conditioning films. Appl Environ Microbiol. 74:5511–5515. doi:10.1128/AEM.01119-08
  • van Wyk SG, Kunert KJ, Cullis CA, Pillay P, Makgopa ME, Schluter U, Vorster BJ. 2016. Review: the future of cystatin engineering. Plant Sci. 246:119–127. doi:10.1016/j.plantsci.2016.02.016
  • Vullhorst D, Neddens J, Karavanova I, Tricoire L, Petralia RS, McBain CJ, Buonanno A. 2009. Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci. 29:12255–12264. doi:10.1523/JNEUROSCI.2454-09.2009
  • Zhang K, Cheng L, Imazato S, Antonucci JM, Lin NJ, Lin-Gibson S, Bai Y, Xu HH. 2013. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent. 41:464–474. doi:10.1016/j.jdent.2013.02.001
  • Zhang Z, Liu Y, Lu M, Lyu X, Gong T, Tang B, Wang L, Zeng J, Li Y. 2020. Rhodiola rosea extract inhibits the biofilm formation and the expression of virulence genes of cariogenic oral pathogen Streptococcus mutans. Arch Oral Biol. 116:104762. doi:10.1016/j.archoralbio.2020.104762

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.