Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 2
547
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Antifouling performance of copper-containing fused filament fabrication (FFF) 3-D printing polymer filaments for marine applications

ORCID Icon, , & ORCID Icon
Pages 206-221 | Received 21 Sep 2020, Accepted 11 Feb 2021, Published online: 10 Mar 2021

References

  • Advincula RC. 2019. 3D printing high performance polymers and the oil and gas industry. CORROSION 2019; NACE-2019-13505; March 24–28; Nashville, USA.
  • Bagheri AR, Laforsch C, Greiner A, Agarwal S. 2017. Fate of so-called biodegradable polymers in seawater and freshwater. Glob Chall. 1:1700048. doi:10.1002/gch2.201700048
  • Bao VWW, Leung KMY, Qiu J-W, Lam MHW. 2011. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar Pollut Bull. 62:1147–1151. doi:10.1016/j.marpolbul.2011.02.041
  • Barngrover C, Kastner R, Denewiler T, Mills G. 2011. The stingray AUV: a small and cost-effective solution for ecological monitoring. SAUC-E 2012 – UNIFI Team – turtle vehicle. Proceedings of SAUC-e (Student Autonomous Underwater Vehicle Challenge – Europe) 2012; La Spezia, Italy. doi:10.23919/OCEANS.2011.6107153
  • Bartolini F, Costanzi R, Monni N, Ridolfi A, Vettori G, Giardi F, Lupi E, Mazzuoli E, Montagni M, Paolucci L, Allotta B. 2012. SAUC-E 2012 - UNIFI Team - Turtle vehicle. In: Presented at the Proceedings of SAUC-e (Student Autonomous Underwater Vehicle Challenge - Europe) 2012, La Spezia, Italy. https://www.researchgate.net/profile/Alessandro-Ridolfi/publication/268601395_SAUC-E_2012_-_UNIFI_Team_-_Turtle_vehicle/links/5496ab2c0cf20f487d3001bf/SAUC-E-2012-UNIFI-Team-Turtle-vehicle.pdf
  • Bilby 3D Pty Ltd. 2020. PLA filament – 1.75mm – copper [accessed 2020 Sep 1]. https://www.bilby3d.com.au/DispProd.asp?CatID=19&SubCatID=146&ProdID=PLAB175CopperSML.
  • Bixler GD, Theiss A, Bhushan B, Lee SC. 2014. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. J Colloid Interface Sci. 419:114–133. doi:10.1016/j.jcis.2013.12.019
  • Callow M, Callow JA. 2002. Marine biofouling: a sticky problem. Biologist. 49:1–5.
  • Carlota V. 2019. University of Maine creates the world’s largest 3D printed boat. 3Dnatives; [accessed 2019 Aug 27]. https://www.3dnatives.com/en/3d-printed-boat-university-of-maine-161020195/.
  • Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brennan AB. 2006. Engineered antifouling microtopographies-correlating wettability with cell attachment. Biofouling. 22:11–21. doi:10.1080/08927010500484854
  • Chen C-L, Maki JS, Rittschof D, Teo SL-M. 2013. Early marine bacterial biofilm on a copper-based antifouling paint. Int Biodeterior Biodegrad. 83:71–76. doi:10.1016/j.ibiod.2013.04.012
  • Colorfabb. 2017. CopperFill; SDS Number: N/A [Online]; Colorfabb B.V.: BELFELD, The Netherlands, 9 August [accessed 2020 Sep 1]. https://colorfabb.com/files/SDS_E_ColorFabb_CopperFill.pdf
  • Coutts ADM, Piola RF, Hewitt CL, Connell SD, Gardner JPA. 2010. Effect of vessel voyage speed on survival of biofouling organisms: implications for translocation of non-indigenous marine species. Biofouling. 26:1–13. doi:10.1080/08927010903174599
  • Coutts ADM, Piola RF, Taylor MD, Hewitt CL, Gardner JPA. 2010. The effect of vessel speed on the survivorship of biofouling organisms at different hull locations. Biofouling. 26:539–553. doi:10.1080/08927014.2010.492469
  • Cristiani P. 2005. Solutions to fouling in power station condensers. Appl Therm Eng. 25:2630–2640. doi:10.1016/j.applthermaleng.2004.11.029
  • D’Epagnier KP, Chung H-L, Stanway MJ, Kimball RW. 2007. An Open Source parametric propeller design tool. OCEANS 2007; 29 Sept.-4 Oct. 2007; Vancouver, Canada. doi:10.1109/OCEANS.2007.4449400
  • Dang H, Lovell CR. 2002. Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situ hybridization. Appl Environ Microbiol. 68:496–504. doi:10.1128/aem.68.2.496-504.2002
  • Davidson I, Scianni C, Hewitt C, Everett R, Holm E, Tamburri M, Ruiz G. 2016. Mini-review: assessing the drivers of ship biofouling management-aligning industry and biosecurity goals. Biofouling. 32:411–428. doi:10.1080/08927014.2016.1149572
  • Delauney L, Compere C, Michel L. 2010. Biofouling protection for marine environmental sensors. Ocean Sci. 6:503–511. doi:10.5194/os-6-503-2010
  • Fitridge I, Dempster T, Guenther J, de Nys R. 2012. The impact and control of biofouling in marine aquaculture: a review. Biofouling. 28:649–669. doi:10.1080/08927014.2012.700478
  • Gittens JE, Smith TJ, Suleiman R, Akid R. 2013. Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnol Adv. 31:1738–1753. doi:10.1016/j.biotechadv.2013.09.002
  • Gkartzou E, Koumoulos EP, Charitidis C. 2017. Production and 3D printing processing of bio-based thermoplastic filament. Manufacturing Rev. 4:1. doi:10.1051/mfreview/2016020
  • GlobalData. 2018. 3D printing in oil and gas – thematic research. GDOG-TR-S004.
  • Goto K, Sugimoto M, Yasue H, Shiotsubo K, Tomoda A, Jinno K, Fujimori F. 2014. Design and concept of the unmanned surface vehicle “Horizon Blue”. Maritime RobotX Challenge 2014, RobotX; October 20-26; Singapore.
  • Hannibal M, Knight G. 2018. Additive manufacturing and the global factory: disruptive technologies and the location of international business. Int Bus Rev. 27:1116–1127. doi:10.1016/j.ibusrev.2018.04.003
  • Haring L. 2017. Research, development, test and evaluation spotlight: 3-D printing [accessed 2020 Aug 27]. https://coastguard.dodlive.mil/2017/08/research-development-test-evaluation-spotlight-3-d-printing/.
  • Huang S, Hadfield MG. 2003. Composition and density of bacterial biofilms determine larval settlement of the polychaete Hydroides elegans. Mar Ecol Prog Ser. 260:161–172. doi:10.3354/meps260161
  • Hung OS, Lee OO, Thiyagarajan V, He HP, Xu Y, Chung HC, Qiu JW, Qian PY. 2009. Characterization of cues from natural multi-species biofilms that induce larval attachment of the polychaete Hydroides elegans. Aquat Biol. 4:253–262. doi:10.3354/ab00110
  • Hunsucker KZ, Gardner H, Lieberman K, Swain G. 2019. Using hydrodynamic testing to assess the performance of fouling control coatings. Ocean Eng. 194:106677. doi:10.1016/j.oceaneng.2019.106677
  • Jem KJ, Tan B. 2020. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Ind Eng Polym Res. 3:60–70. doi:10.1016/j.aiepr.2020.01.002
  • Jiang C, Zhao G-F. 2015. A preliminary study of 3D printing on rock mechanics. Rock Mech Rock Eng. 48:1041–1050. doi:10.1007/s00603-014-0612-y
  • Kohler KE, Gill SM. 2006. Coral Point Count with excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci. 32:1259–1269. doi:10.1016/j.cageo.2005.11.009
  • Leary M, Piola R, Shimeta J, Toppi S, Mayson S, McMillan M, Brandt M. 2016. Additive manufacture of anti-biofouling inserts for marine applications. RPJ. 22:416–434. doi:10.1108/RPJ-02-2014-0022
  • Liu Z, Wang Y, Wu B, Cui C, Guo Y, Yan C. 2019. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int J Adv Manuf Technol. 102:2877–2889. doi:10.1007/s00170-019-03332-x
  • Loxton J, Macleod AK, Nall CR, McCollin T, Machado I, Simas T, Vance T, Kenny C, Want A, Miller RG. 2017. Setting an agenda for biofouling research for the marine renewable energy industry. Int J Mar Energy. 19:292–303. doi:10.1016/j.ijome.2017.08.006
  • Maddah H, Chogle A. 2017. Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation. Appl Water Sci. 7:2637–2651. doi:10.1007/s13201-016-0493-1
  • Mohammed JS. 2016. Applications of 3D printing technologies in oceanography. Methods Oceanogr. 17:97–117. doi:10.1016/j.mio.2016.08.001
  • Muthukrishnan T, Abed R, Dobretsov S, Kidd B, Finnie A. 2014. Long-term microfouling on commercial biocidal fouling control coatings. Biofouling. 30:1155–1164. doi:10.1080/08927014.2014.972951
  • Núñez L, Reguera E, Corvo F, González E, Vazquez C. 2005. Corrosion of copper in seawater and its aerosols in a tropical island. Corros Sci. 47:461–484. doi:10.1016/j.corsci.2004.05.015
  • Odetti A, Altosole M, Bruzzone G, Caccia M, Viviani M. 2019. Design and construction of a modular pump-jet thruster for autonomous surface vehicle operations in extremely shallow water. JMSE. 7:222. doi:10.3390/jmse7070222
  • Page H, Dugan J, Piltz F. 2010. Fouling and antifouling in oil and other offshore industries. In: Dürr S, Thomason JC, editors. Biofouling. West Sussex (UK): Blackwell Publishing Ltd; p. 252–266. doi:10.1002/9781444315462
  • Qian P-Y. 1999. Larval settlement of polychaetes. In: Dorresteijn AWC, Westheide W, editors. Reproductive strategies and developmental patterns in annelids. Dordrecht (The Netherlands): Springer Netherlands; p. 239–253. doi:10.1007/978-94-017-2887-4
  • Robson, J. 2018. How are filaments made [accessed 2021 Mar 5]. https://www.filaments.directory/en/blog/2018/08/29/how-are-filaments-made
  • Rodríguez SR, Ojeda FP, Inestrosa NC. 1993. Settlement of benthic marine invertebrates. Mar Ecol Prog Ser. 97:193–207. doi:10.3354/meps097193
  • Salta M, Wharton JA, Dennington SP, Stoodley P, Stokes KR. 2013. Anti-biofilm performance of three natural products against initial bacterial attachment. Int J Mol Sci. 14:21757–21780. doi:10.3390/ijms141121757
  • Satuito CG, Shimizu K, Fusetani N. 1997. Studies on the factors influencing larval settlement in Balanus amphitrite and Mytilus galloprovincialis. Hydrobiologia. 358:275–280. doi:10.1023/A:1003109625166
  • Saunders S. 2017. US Navy and ORNL team up to develop the military’s first 3D printed submarine hull on the BAAM. 3DPRINT.COM; [accessed 2020 Aug 27]. https://3dprint.com/181795/navy-ornl-3d-printed-sub-hull/.
  • Scardino A, de Nys R. 2004. Fouling Deterrence on the bivalve shell Mytilus galloprovincialis: a physical phenomenon? Biofouling. 20:249–257. doi:10.1080/08927010400016608
  • Scardino AJ. 2009. 25 – Surface modification approaches to control marine biofouling. In: Hellio C, Yebra D, editors. Advances in marine antifouling coatings and technologies. Cambridge (UK): Woodhead Publishing; p. 664–692. doi:10.1533/9781845696313.4.664
  • Scardino AJ, Guenther J, de Nys R. 2008. Attachment point theory revisited: the fouling response to a microtextured matrix. Biofouling. 24:45–53. doi:10.1080/08927010701784391
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98. doi:10.1080/08927014.2010.542809
  • Scott C. 2018a. 3D printing keeps navy ships up and running for minimal cost. 3DPRINT.COM; [accessed 2020 Aug 27]. https://3dprint.com/225576/3d-printing-navy-ships/.
  • Scott C. 2018b. 3D printing valued by the navy for underway replenishment. 3DPRINT.COM; [accessed 2020 Aug 27]. https://3dprint.com/223198/3d-printing-navyunderway/.
  • Shenzhen Esun Industrial Co. Ltd. 2018. PLA eCopper filament; SDS Number: YS3D116004 [Online]; Shenzhen Esun Industrial Co. Ltd: Shenzhen, China, 1 March [accessed 2020 Sep 1]. http://www.esun3d.net/UploadFiles/Download/MSDS_eSUN_PLA%20eCopper%20filament.pdf.
  • Simplify3D. 2020. Filament properties table [accessed 2020 Aug 27]. https://www.simplify3d.com/support/materials-guide/properties-table/
  • Skovus TL, Enning D, Lee JS. 2017. Microbiologically influenced corrosion in the upstream oil and gas industry. Boca Raton (FL): CRC Press. doi:10.1201/9781315157818
  • Soroldoni S, Abreu F, Castro ÍB, Duarte FA, Pinho GLL. 2017. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? J Hazard Mater. 330:76–82. doi:10.1016/j.jhazmat.2017.02.001
  • Stenson C, McDonnell KA, Yin S, Aldwell B, Meyer M, Dowling DP, Lupoi R. 2018. Cold spray deposition to prevent fouling of polymer surfaces. Surf Eng. 34:193–204. doi:10.1080/02670844.2016.1229833
  • Taylor CJL. 2006. The effects of biological fouling control at coastal and estuarine power stations. Mar Pollut Bull. 53:30–48. doi:10.1016/j.marpolbul.2006.01.004
  • Venkatesan R, Senthilkumar P, Vedachalam N, Murugesh P. 2017. Biofouling and its effects in sensor mounted moored observatory system in Northern Indian Ocean. Int Biodeterior Biodegrad. 116:198–204. doi:10.1016/j.ibiod.2016.10.034
  • Vucko MJ, King PC, Poole AJ, Carl C, Jahedi MZ, de Nys R. 2012. Cold spray metal embedment: an innovative antifouling technology. Biofouling. 28:239–248. doi:10.1080/08927014.2012.670849
  • Vucko MJ, King PC, Poole AJ, Jahedi MZ, de Nys R. 2013. Polyurethane seismic streamer skins: an application of cold spray metal embedment. Biofouling. 29:1–9. doi:10.1080/08927014.2012.741682
  • Winfield MO, Downer A, Longyear J, Dale M, Barker GLA. 2018. Comparative study of biofilm formation on biocidal antifouling and fouling-release coatings using next-generation DNA sequencing. Biofouling. 34:464–477. doi:10.1080/08927014.2018.1464152
  • Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology–past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. 50:75–104. doi:10.1016/j.porgcoat.2003.06.001
  • Yue C, Guo S, Li Y, Li M. 2014. Bio-inspired robot launching system for a mother-son underwater manipulation task. 2014 IEEE International Conference on Mechatronics and Automation, IEEE ICMA 2014; Aug 3–6: Tianjin, China. doi:10.1109/ICMA.2014.6885691
  • Zhu X, Jańczewski D, Guo S, Lee SSC, Parra Velandia FJ, Teo SL-M, He T, Puniredd SR, Vancso GJ. 2015. Polyion multilayers with precise surface charge control for antifouling. ACS Appl Mater Interfaces. 7:852–861. doi:10.1021/am507371a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.