Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 2
92
Views
3
CrossRef citations to date
0
Altmetric
Research Article

(PhSe)2 and (pCl-PhSe)2 organochalcogen compounds inhibit Candida albicans adhesion to human endocervical (HeLa) cells and show anti-biofilm activities

, , , , , , , ORCID Icon & ORCID Icon show all
Pages 235-245 | Received 08 Oct 2020, Accepted 23 Feb 2021, Published online: 15 Mar 2021

References

  • Bácskay I, Nemes D, Fenyvesi F, Váradi J, Vasvári G, Fehér P, Vecsernyés M, Ujhelyi Z. 2018. Role of cytotoxicity experiments in pharmaceutical development. Cytotoxicity, InTech. doi:10.5772/intechopen.72539
  • Cullen PJ, Sprague GF. 2012. The regulation of filamentous growth in yeast. Genetics. 190:23–49. doi:10.1534/genetics.111.127456
  • de Amorim LMM, Braga MT, Carvalho ML, de Oliveira IR, Querobino SM, Alberto-Silva C, da Rocha JBT, Costa MS. 2018. The organochalcogen compound (MeOPhSe)2 inhibits both formation and the viability of the biofilm produced by Candida albicans, at different stages of development. Curr Pharm Des. 24:3964–3971. doi:10.2174/1381612825666181120155433
  • Desai JV, Mitchell AP. 2015. Candida albicans biofilm development and its genetic control. Microbiol Spectr. 3(3):10.1128/microbiolspec.MB-0005-2014. doi:10.1128/microbiolspec.MB-0005-2014
  • El-Azizi M, Farag N, Khardori N. 2015. Antifungal activity of amphotericin B and voriconazole against the biofilms and biofilm-dispersed cells of Candida albicans employing a newly developed in vitro pharmacokinetic model. Ann Clin Microbiol Antimicrob. 14: 21. doi:10.1186/s12941-015-0083-3
  • Felli Kubiça T, Bedin Denardi L, Silva de Loreto É, Zeni G, Weiblen C, Oliveira V, Morais Santurio J, Hartz Alves S. 2019. In vitro activity of diphenyl diselenide and ebselen alone and in combination with antifungal agents against Trichosporon asahii. Mycoses. 62:428–433. doi:10.1111/myc.12906
  • Feoktistova M, Geserick P, Leverkus M. 2016. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc. 2016:343–346. doi:10.1101/pdb.prot087379
  • de Freitas AS, Funck VR, Rotta M dos S, Bohrer D, Mörschbächer V, Puntel RL, Nogueira CW, Farina M, Aschner M, Rocha JBT. 2009. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice. Brain Res Bull. 79:77–84. doi:10.1016/j.brainresbull.2008.11.001
  • Giurg M, Gołąb A, Suchodolski J, Kaleta R, Krasowska A, Piasecki E, Piętka-Ottlik M. 2017. Reaction of bis[(2-chlorocarbonyl)phenyl] diselenide with phenols, aminophenols, and other amines towards diphenyl diselenides with antimicrobial and antiviral properties. Molecules. 22:974. doi:10.3390/molecules22060974
  • Lan YB, Huang YZ, Qu F, Li JQ, Ma LJ, Yan J, Zhou JH. 2017. Time course of global gene expression alterations in Candida albicans during infection of HeLa cells. Bosn J Basic Med Sci. 17:120–131. doi:10.17305/bjbms.2017.1667
  • LeBlanc EV, Polvi EJ, Veri AO, Privé GG, Cowen LE. 2020. Structure-guided approaches to targeting stress responses in human fungal pathogens. J Biol Chem. 295:14458–14472. doi:10.1074/jbc.REV120.013731
  • Martins M, Henriques M, Lopez-Ribot JL, Oliveira R. 2012. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses. 55:80–85. doi:10.1111/j.1439-0507.2011.02047.x
  • Mathé L, Van Dijck P. 2013. Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet. 59:251–264. doi:10.1007/s00294-013-0400-3
  • Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence. 4:119–128. doi:10.4161/viru.22913
  • Meinerz DF, Branco V, Aschner M, Carvalho C, Rocha JBT. 2017. Diphenyl diselenide protects against methylmercury-induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: a comparison with ebselen. J Appl Toxicol. 37:1073–1081. doi:10.1002/jat.3458
  • Melo AM, Poester VR, Trapaga M, Nogueira CW, Zeni G, Martinez M, Sass G, Stevens DA, Xavier MO. 2020. Diphenyl diselenide and its interaction with antifungals against Aspergillus spp. Med Mycol. myaa072. doi:10.1093/mmy/myaa072
  • Nascimento V, Ferreira NL, Canto RFS, Schott KL, Waczuk EP, Sancineto L, Santi C, Rocha JBT, Braga AL. 2014. Synthesis and biological evaluation of new nitrogen-containing diselenides. Eur J Med Chem. 87:131–139. doi:10.1016/j.ejmech.2014.09.022
  • Nobile CJ, Johnson AD. 2015. Candida albicans biofilms and human disease. Annu Rev Microbiol. 69:71–92. doi:10.1146/annurev-micro-091014-104330
  • Nogueira CW, Rocha JBT. 2011. Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol. 85:1313–1359. doi:10.1007/s00204-011-0720-3
  • Paulmier C. 1986. Selenium reagents and intermediates in organic synthesis. 1st ed. Vol. 4. Pergamon.
  • Pereira R, dos Santos Fontenelle RO, de Brito EHS, de Morais SM. 2020. Biofilm of Candida albicans: formation, regulation and resistance. J Appl Microbiol. doi:10.1111/jam.14949
  • Plano D, Karelia DN, Pandey MK, Spallholz JE, Amin S, Sharma AK. 2016. Design, synthesis, and biological evaluation of novel selenium (Se-NSAID) molecules as anticancer agents. J Med Chem. 59:1946–1959. doi:10.1021/acs.jmedchem.5b01503
  • Poester VR, Mattei AS, Mendes JF, Klafke GB, Ramis IB, Sanchotene KO, Xavier MO. 2019. Antifungal activity of diphenyl diselenide alone and in combination with itraconazole against Sporothrix brasiliensis. Med Mycol. 57:328–331. doi:10.1093/mmy/myy044
  • Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. 2009. Our current understanding of fungal biofilms. Crit Rev Microbiol. 35:340–355. doi:10.3109/10408410903241436
  • Ramage G, Saville SP, Thomas DP, López-Ribot JL. 2005. Candida biofilms: an update. Eukaryot Cell. 4:633–638. doi:10.1128/EC.4.4.633-638.2005
  • Roos DH, Puntel RL, Santos MM, Souza DOG, Farina M, Nogueira CW, Aschner M, Burger ME, Barbosa NBV, Rocha JBT. 2009. Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: involvement of oxidative stress and glutamatergic system. Toxicol In Vitro. 23:302–307. doi:10.1016/j.tiv.2008.12.020
  • Rosa RM, Roesler R, Braga AL, Saffi J, Henriques JAP. 2007. Pharmacology and toxicology of diphenyl diselenide in several biological l models. Braz J Med Biol Res. 40:1287–1304. doi:10.1590/s0100-879x2006005000171
  • Rossato L, Loreto ES, Venturini TP, de Azevedo MI, Al-Hatmi AMS, Santurio JM, Alves SH. 2019. In vitro combination between antifungals and diphenyl diselenide against Cryptococcus species. Mycoses. 62:508–512. doi:10.1111/myc.12905
  • Rosseti I, Junior P, Campos C, Rocha J, Costa M. 2014. Biofilm formation by Candida albicans is inhibited by 4,4-dichloro diphenyl diselenide (pCl-PhSe)2. Curr Drug Discov Technol. 11:234–238. doi:10.2174/1570163811666140924121758
  • Rosseti IB, Rocha JBT, Costa MS. 2015. Diphenyl diselenide (PhSe)2 inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. J Trace Elem Med Biol. 29:289–295. doi:10.1016/j.jtemb.2014.08.001
  • Rosseti IB, Wagner C, Fachinetto R, Taube Junior P, Costa MS. 2011. Candida albicans growth and germ tube formation can be inhibited by simple diphenyl diselenides [(PhSe)2, (MeOPhSe)2, (p-Cl-PhSe)2, (F3CPhSe)2] and diphenyl ditelluride. Mycoses. 54:506–513. doi:10.1111/j.1439-0507.2010.01888.x
  • Ruhnke M. 2014. Antifungal stewardship in invasive Candida infections. Clin Microbiol Infect. 20:11–18. doi:10.1111/1469-0691.12622
  • Sancineto L, Piccioni M, De Marco S, Pagiotti R, Nascimento V, Braga AL, Santi C, Pietrella D. 2016. Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection. BMC Microbiol. 16: 220. doi:10.1186/s12866-016-0837-x
  • Sardi JCO, Almeida AMF, Mendes Giannini MJS. 2011. New antimicrobial therapies used against fungi present in subgingival sites – a brief review. Arch Oral Biol. 56:951–959. doi:10.1016/j.archoralbio.2011.03.007
  • Sardi JDCO, Pitangui NDS, Rodríguez-Arellanes G, Taylor ML, Fusco-Almeida AM, Mendes-Giannini MJS. 2014. Highlights in pathogenic fungal biofilms. Rev Iberoam Micol. 31:22–29. doi:10.1016/j.riam.2013.09.014
  • Segal E, Sandovsky-Losica H. 1995. Adhesion and interaction of Candida albicans with mammalian tissues in vitro and in vivo. Methods Enzymol. 253:439–452. doi:10.1016/s0076-6879(95)53038-x
  • Stefanello ST, Mizdal CR, Gonçalves DF, Hartmann DD, Dobrachinski F, de Carvalho NR, Salman SM, Sauer AC, Dornelles L, de Campos MMA, Soares FAA. 2020. The insertion of functional groups in organic selenium compounds promote changes in mitochondrial parameters and raise the antibacterial activity. Bioorg Chem. 98:103727. doi:10.1016/j.bioorg.2020.103727
  • Steinbrenner H, Speckmann B, Klotz LO. 2016. Selenoproteins: antioxidant selenoenzymes and beyond. Arch Biochem Biophys. 595:113–119. doi:10.1016/j.abb.2015.06.024
  • Tsui C, Kong EF, Jabra-Rizk MA. 2016. Pathogenesis of Candida albicans biofilm. Pathog Dis. 74:ftw018. doi:10.1093/femspd/ftw018
  • Vila TVM, Ishida K, de Souza W, Prousis K, Calogeropoulou T, Rozental S. 2013. Effect of alkylphospholipids on Candida albicans biofilm formation and maturation. J Antimicrob Chemother. 68:113–125. doi:10.1093/jac/dks353
  • Węglarz-Tomczak E, Burda-Grabowska M, Giurg M, Mucha A. 2016. Identification of methionine aminopeptidase 2 as a molecular target of the organoselenium drug ebselen and its derivatives/analogues: synthesis, inhibitory activity and molecular modeling study. Bioorg Med Chem Lett. 26:5254–5259. doi:10.1016/j.bmcl.2016.09.050
  • Wisplinghoff H, Ebbers J, Geurtz L, Stefanik D, Major Y, Edmond MB, Wenzel RP, Seifert H. 2014. Nosocomial bloodstream infections due to Candida spp. in the USA: species distribution, clinical features and antifungal susceptibilities. Int J Antimicrob Agents. 43:78–81. doi:10.1016/j.ijantimicag.2013.09.005
  • Xia J, Qian F, Xu W, Zhang Z, Wei X. 2017. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. Biofouling. 33:283–293. doi:10.1080/08927014.2017.1295304

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.