Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 4
360
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The effect of cleaning and repainting on the ship drag penalty

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 372-386 | Received 25 Oct 2019, Accepted 05 Apr 2021, Published online: 14 Jun 2021

References

  • Bandyopadhyay PR. 1987. Rough-wall turbulent boundary layers in the transition regime. J Fluid Mech. 180:231–266. doi:10.1017/S0022112087001794
  • Chan L, MacDonald M, Chung D, Hutchins N, Ooi A. 2015. A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J Fluid Mech. 771:743–777. doi:10.1017/jfm.2015.172
  • Chung D, Hutchins N, Schultz MP, Flack KA. 2021. Predicting the drag of rough surfaces. Ann Rev Fluid Mech. 53:439–471. doi:10.1146/annurev-fluid-062520-115127
  • Clauser FH. 1954. Turbulent boundary layers in adverse pressure gradients. J Aeronaut Sci. 21:91–108. doi:10.2514/8.2938
  • Clauser FH. 1956. The turbulent boundary layers. Adv Appl Mech. 4:1–151.
  • Cobert JJ, Fisbeck PS, Pandis SN. 1999. Global nitrogen and sulfur inventories for oceangoing ships. J Geophys Res. 104:3457–3470.
  • Colebrook CF, White CM. 1937. Experiments with fluid friction in roughened pipes. Phil Trans R Soc London Ser A. 16:367–381.
  • Flack KA, Schultz P. 2010. Review of hydraulic roughness scales in the fully rough regime. J Fluids Eng. 132:041203.
  • Flack KA, Schultz MP, Barros JM, Kim YC. 2016. Skin-friction behavior in the transitionally-rough regime. Int J Heat Fluid Flow. 61:21–30. doi:10.1016/j.ijheatfluidflow.2016.05.008
  • Flack KA, Schultz MP, Connelly JS. 2007. Examination of a critical roughness height for outer layer similarity. Phys Fluids. 19:095104. doi:10.1063/1.2757708
  • Flack KA, Schultz MP, Shapiro TA. 2005. Experimental support for Townsend’s Reynolds number similarity hypothesis on rough wall. Phys Fluids. 17:035102. doi:10.1063/1.1843135
  • Forooghi P, Stroh A, Magagnato F, Jakirlić S, Frohnapfel B. 2017. Toward a universal roughness correlation. J Fluids Eng. 139: 121201.
  • Furuya Y, Miyata M, Fujita H. 1976. Turbulent boundary layer and flow resistance on plates roughened by wires. J Fluids Eng. 98:635–643.
  • Granville PS. 1958. The frictional resistance and turbulent boundary layer of rough plates. Technical Report 1024. Navy Department.
  • Grigson C. 1985. The drag at ship scale of planes having any quality of roughness. J Ship Res. 29:94–104. doi:10.5957/jsr.1985.29.2.94
  • Grigson C. 1987. The full-scale viscous drag of actual ship surfaces and the effect of quality roughness on predicted power. J Ship Res. 31:189–206. doi:10.5957/jsr.1987.31.3.189
  • Grigson C. 1992. Drag losses of new ships caused by hull finish. J Ship Res. 36:182–196. doi:10.5957/jsr.1992.36.2.182
  • Hama FR. 1954. Boundary-layer characteristics for smooth and rough surfaces. Trans Soc Nav Archit Mar Eng. 62:333–358.
  • Holtrop JA. 1977. Statistical analysis of performance test results. Int Shipbuild Prog. 24:23–28. doi:10.3233/ISP-1977-2427001
  • Holtrop JA. 1984. Statistical re-analysis of resistance and propulsion data. Int Shipbuild Prog. 31:272–276.
  • Holtrop J, Mennen GGJ. 1978. A statistical power prediction method. Int Shipbuild Prog. 25:253–256. doi:10.3233/ISP-1978-2529001
  • Holtrop J, Mennen GGJ. 1982. An approximate power prediction method. Int Shipbuild Prog. 29:166–170. doi:10.3233/ISP-1982-2933501
  • Hutchins N, Nickels TB, Marusic I, Chong MS. 2009. Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech. 635:103–136. doi:10.1017/S0022112009007721
  • Hutchins N, Monty JP, Ganapathisubramani B, Nugroho B, Utama IKAP. 2016. Turbulent boundary layers developing over rough surfaces: from the laboratory to full-scale systems. In 20th Australasian Fluid Mechanics Conference (AFMC). Perth, Australia.
  • ITTC. 2014. Recommended Procedures and Guidelines - 1978 ITTC performance prediction method 7.5-02-03-01.4 (Revision 03).
  • Jelly T, Busse A. 2018. Reynolds and dispersive shear stress contributions above highly skewed roughness. J Fluid Mech. 852:710–724. doi:10.1017/jfm.2018.541
  • Jimenez J. 2004. Turbulent flows over rough walls. Annu Rev Fluid Mech. 36:173–196. doi:10.1146/annurev.fluid.36.050802.122103
  • Kodama Y, Kakugawa A, Takahashi T, Kawashima H. 2000. Experimental study on microbubbles and their applicability to ships for skin friction reduction. Int J Heat Fluid Flow. 21:582–588. doi:10.1016/S0142-727X(00)00048-5
  • Lackenby H. 1962. Resistance of ships, with special reference to skin friction and hull surface condition. Proc Inst Mech Eng. 176:981–1014.
  • Ligrani PM, Bradshaw P. 1987. Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wires probes. Exp Fluids. 5:407–417. doi:10.1007/BF00264405
  • Marusic I, Chauhan KA, Kulandaivelu V, Hutchins N. 2015. Evolution of zero-pressure-gradient boundary layers from different tripping conditions. J Fluid Mech. 783:379–411. doi:10.1017/jfm.2015.556
  • Marusic I, Chauhan KA, Kulandaivelu V, Hutchins N. 2016. Study of the streamwise evolution of turbulent boundary layers to high Reynolds numbers. In Whither turbulence and big data in the 21st century? 47–60.
  • Marusic I, Monty JP, Hultmark M, Smits AJ. 2013. On the logarithmic region in wall turbulence. J Fluid Mech. 716: 1–11.
  • Molland AF, Turnock SR, Hudson DA, Utama IKAP. 2014. Reducing ship emissions: a review of potential practical improvements in the propulsive efficiency of future ships. Trans R Inst Naval Archit Part A. 156:175–188.
  • Monty JP, Allen JJ, Lien K, Chong MS. 2011. Modification of the large-scale features of high Reynolds number wall turbulence by passive surface obtrusions. Exp Fluids. 51:1755–1763. doi:10.1007/s00348-011-1190-3
  • Monty JP, Dogan E, Hanson R, Scardion AJ, Ganapathisubramani G, Hutchins N. 2016. An assessment of the ship drag penalty arising from light calcareous tubeworm fouling. Biofouling. 32:451–464. doi:10.1080/08927014.2016.1148140
  • Morrill-Winter C, Squire DT, Klewicki JC, Hutchins N, Schultz MP, Marusic I. 2017. Reynolds number and roughness effects on turbulent stresses in sandpaper roughness boundary layers. Phys Rev Fluids. 2:054608.
  • Nikuradse J. 1933. Stromungsgesetze in rauhen rohren. VDI-Forsch 361.
  • Nugroho B, Hutchins N, Monty JP. 2013. Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Int J Heat Fluid Flow. 41:90–102.
  • Nugroho B, Monty JP, Utama IKAP, Ganapathisubramani B, Hutchins N. 2021. Non k-type behaviour of roughness when1 in-plane wavelength approaches the boundary layer thickness. J Fluid Mech. 911:A1.
  • Nugroho B, Baidya B, Nurrohman MN, Yusim Ak, Prasetyo Fa, Yusuf M, Suastika IK, Utama IKAP, Monty Jp, Hutchins N, Ganapathisubramani B. 2017. In-situ turbulent boundary layer measurements over freshly cleaned ship-hull under steady cruising. Royal Institution of Naval Architects (RINA) Conference, International Conference on Ship and Offshore Technology (ICSOT). Jakarta, Indonesia.
  • Nugroho B, Gnanamanickam EP, Kevin Monty JP, Hutchins N. 2014. Roll-modes generated in turbulent boundary layers with passive surface modifications. AIAA paper. doi:10.2514/6.2014-0197
  • Nugroho B, Utama IKAP, Monty JP, Hutchins N, Ganapathisubramani B. 2018. The influence of in-plane roughness wavelength relative to the boundary layer thickness. 12th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM). Montpellier, France
  • Perry AE. 1982. Hot-wire anemometry. Oxford, UK: Oxford University Press.
  • Perry AE, Joubert PN. 1963. Rough-wall boundary layers in adverse pressure gradients. J Fluid Mech. 17:193–211. doi:10.1017/S0022112063001245
  • Perry AE, Li JD. 1990. Experimental support for the attached-eddy hypothesis in zero pressure-gradient turbulent boundary layers. J Fluid Mech. 218:405–438. doi:10.1017/S0022112090001057
  • Perry AE, Morrison GL. 1971. A study of the constant temperature hot-wire anemometer. J Fluid Mech. 47:577–599. doi:10.1017/S0022112071001241
  • Perry AE, Schofield WH, Joubert PN. 1969. Rough wall turbulent boundary layers. J Fluid Mech. 37:383–413. doi:10.1017/S0022112069000619
  • Prandtl L, Schlichting H. 1955. The resistance law for rough plates. Technical Report 258. Navy Dept. Translated by P. Granville.
  • Pullin DI, Hutchins N, Chung D. 2017. Turbulent flow over a long flat plate with uniform roughness. Phys Rev Fluids. 2:082601(R).
  • Ramani A, Nugroho B, Monty JP, Hutchins N, Busse A, Jelly TO. 2020. The effect of anisotropic surface roughness on turbulent boundary-layer flow. In 22nd Australasian Fluid Mechanics Conference (AFMC). Brisbane, Australia.
  • Schultz MP. 2002. The relationship between frictional resistance and roughness for surfaces smoothed by sanding. J Fluids Eng. 124:492–499. doi:10.1115/1.1459073
  • Schultz MP. 2004. Frictional resistance of antifouling coating systems. J Fluids Eng. 126:1039–1047. doi:10.1115/1.1845552
  • Schultz MP. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling. 23:331–341. doi:10.1080/08927010701461974
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98. doi:10.1080/08927014.2010.542809
  • Schultz MP, Flack KA. 2005. Outer layer similarity in fully rough turbulent boundary layers. Exp Fluids. 38:328–340. doi:10.1007/s00348-004-0903-2
  • Schultz MP, Flack KA. 2007. The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580:381–405. doi:10.1017/S0022112007005502
  • Schultz P, Walker J, Steppe CN, Flack KA. 2015. Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings. Biofouling. 31:759–773. doi:10.1080/08927014.2015.1108407
  • Shockling MA, Allen JJ, Smits AJ. 2006. Roughness effects in turbulent pipe flow. J Fluid Mech. 564:267–285. doi:10.1017/S0022112006001467
  • Squire DT, Morrill-Winter C, Hutchins N, Marusic I, Schultz MP, Klewicki JC. 2016a. Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry. Phy Rev Fluids. 1:064402.
  • Squire DT, Morrill-Winter C, Hutchins N, Schultz MP, Klewicki JC, Marusic I. 2016b. Comparison of turbulent boundary layers over smooth and rough surfaces up to high reynolds numbers. J Fluid Mech. 795:210–240. doi:10.1017/jfm.2016.196
  • Talluru KM, Kulandaivelu V, Hutchins N, Marusic I. 2014. A calibration technique to correct sensor drift issues in hot-wire anemometry. Mes Sci Tech. 25:105304.
  • Thakkar M, Busse A, Sandham N. 2018. Direct numerical simulation of turbulent channel flow over a surrogate for Nikuradse-type roughness. J Fluid Mech. 837:R1.
  • Townsend AA. 1976. The structure of turbulent shear flow. 2nd ed. Cambridge, UK: Cambridge University Press.
  • Townsin RL. 2003. The ship hull fouling penalty. Biofouling. 19:9–15. doi:10.1080/0892701031000088535
  • Townsin RL, Byrne D, Milne A, Svensen T. 1980. Speed, power and roughness: the economics of outer bottom maintenance. Nav Archit. (6):459–483.
  • Townsin RL, Byrne D, Svensen TE, Milne A. 1981. Estimating the techical and economic penalties of hull and propeller roughness. Trans Soc Nav Archit Mar Engrs. 89:295–318.
  • Winebrake JJ, Corbett JJ, Green EH, Lauer A, Erying V. 2009. Mitigating the health impacts of pollution from oceangoing shipping: An assessment of low-sulfur fuel mandates. Environ Sci Technol. 43:4776–4782. doi:10.1021/es803224q
  • Wu Y, Christensen KT. 2007. Outer-layer similarity in the presence of a practical rough wall topography. Phys Fluids. 19:085108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.