Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 5
339
Views
4
CrossRef citations to date
0
Altmetric
Research Article

In vitro polymicrobial inter-kingdom three-species biofilm model: influence of hyphae on biofilm formation and bacterial physiology

ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 481-493 | Received 18 Dec 2020, Accepted 13 Apr 2021, Published online: 06 Jul 2021

References

  • Archambault LS, Trzilova D, Gonia S, Gale C, Wheeler RT. 2019. Intravital imaging reveals divergent cytokine and cellular immune responses to Candida albicans and Candida parapsilosis. MBio. 10(3):1–18. doi:10.1128/mBio.00266-19
  • Arciola CR, Campoccia D, Montanaro L. 2018. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 16:397–409. doi:10.1038/s41579-018-0019-y
  • Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Hamal P, Guinea J, Eucast-AFST. 2017. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. Eucast Edef. 731:1–21.
  • BioSurface Technologies Co. 2019. CDC Biofilm Reactor® (CBR) Operator’s Manual [accessed 2021 Feb]:[p. 1–17]. https://biofilms.biz/biosurfacetechnologies.com/wp-content/uploads/2021/03/CBR-Operators-Manual-Mar2021.pdf
  • Blumer C, Kleefeld A, Lehnen D, Heintz M, Dobrindt U, Nagy G, Michaelis K, Emödy L, Polen T, Rachel R, et al. 2005. Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli. Microbiology. 151:3287–3298. doi:10.1099/mic.0.28098-0
  • Bronesky D, Wu Z, Marzi S, Walter P, Geissmann T, Moreau K, Vandenesch F, Caldelari I, Romby P. 2016. Staphylococcus aureus RNAIII and its regulon link quorum sensing, stress responses, metabolic adaptation, and regulation of virulence gene expression. Annu Rev Microbiol. 70:299–316. doi:10.1146/annurev-micro-102215-095708
  • De Brucker K, Tan Y, Vints K, De Cremer K, Braem A, Verstraeten N, Michiels J, Vleugels J, Cammue BPA, Thevissen K. 2015. Fungal β-1,3-glucan increases ofloxacin tolerance of Escherichia coli in a polymicrobial E. coli/Candida albicans biofilm. Antimicrob Agents Chemother. 59:3052–3058. doi:10.1128/AAC.04650-14
  • De Carvalho Dias K, Barbugli PA, De Patto F, Lordello VB, De Aquino Penteado L, Medeiros AI, Vergani CE. 2017. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response. BMC Microbiol. 17:146. doi:10.1186/s12866-017-1031-5
  • Chupáčová J, Borghi E, Morace G, Los A, Bujdáková H. 2018. Anti-biofilm activity of antibody directed against surface antigen complement receptor 3-related protein—comparison of Candida albicans and Candida dubliniensis. Pathog Dis. 76(1):1–10.
  • Crabbé A, Jensen PØ, Bjarnsholt T, Coenye T. 2019. Antimicrobial tolerance and metabolic adaptations in microbial biofilms. Trends Microbiol. 27:850–863. doi:10.1016/j.tim.2019.05.003
  • Diaz Iglesias Y, Wilms T, Vanbever R, Van Bambeke F. 2019. Activity of antibiotics against Staphylococcus aureus in an in vitro model of biofilms in the context of cystic fibrosis: influence of the culture medium. Antimicrob Agents Chemother. 63:1–14. doi:10.1128/AAC.00602-19
  • Dige I, Nyvad B. 2019. Candida species in intact in vivo biofilm from carious lesions. Arch Oral Biol. 101:142–146. doi:10.1016/j.archoralbio.2019.03.017
  • Fisher RA, Gollan B, Helaine S. 2017. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 15:453–464. doi:10.1038/nrmicro.2017.42
  • Förster TM, Mogavero S, Dräger A, Graf K, Polke M, Jacobsen ID, Hube B. 2016. Enemies and brothers in arms: Candida albicans and gram-positive bacteria. Cell Microbiol. 18:1709–1715. doi:10.1111/cmi.12657
  • Hall CW, Mah T-F. 2017. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 41:276–301. doi:10.1093/femsre/fux010
  • Harriott MM, Noverr MC. 2010. Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation.AAC. 54:3746–3755. doi:10.1128/AAC.00573-10
  • Houston P, Rowe SE, Pozzi C, Waters EM, O'Gara JP. 2011. Essential role for the major autolysin in the fibronectin-binding protein-mediated Staphylococcus aureus biofilm phenotype. Infect Immun. 79:1153–1165. doi:10.1128/IAI.00364-10
  • Kart D, Tavernier S, Van Acker H, Nelis HJ, Coenye T. 2014. Activity of disinfectants against multispecies biofilms formed by Staphylococcus aureus, Candida albicans and Pseudomonas aeruginosa. Biofouling. 30(3):377–383. doi:10.1080/08927014.2013.878333
  • Kojic EM, Darouiche RO. 2004. Candida infections of medical devices. CMR. 17:255–267. doi:10.1128/CMR.17.2.255-267.2004
  • Kong EF, Tsui C, Kucharíková S, Andes D, Van Dijck P, Jabra-Rizk MA. 2016. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. MBio. 7:e01365–16. doi:10.1128/mBio.01365-16
  • Kong EF, Tsui C, Kucharíková S, Van Dijck P, Jabra-Rizk MA. 2017. Modulation of Staphylococcus aureus response to antimicrobials by the Candida albicans quorum sensing molecule farnesol. Antimicrob Agents Chemother. 61:e01573–17. doi:10.1128/AAC.01573-17
  • Larsen MKS, Thomsen TR, Moser C, Høiby N, Nielsen PH. 2008. Use of cultivation-dependent and -independent techniques to assess contamination of central venous catheters: a pilot study. BMC Clin Pathol. 8:10. doi:10.1186/1472-6890-8-10
  • Lazzell AL, Chaturvedi AK, Pierce CG, Prasad D, Uppuluri P, Lopez-Ribot JL. 2009. Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimicrob Chemother. 64:567–570. doi:10.1093/jac/dkp242
  • Li H, Gong H, Qi Y, Li J, Ji X, Sun J, Tian R, Bao H, Song X, Chen Q, Liu G. 2017. In vitro and in vivo antifungal activities and mechanism of heteropolytungstates against Candida species. Sci Rep. 7:16942. doi:10.1038/s41598-017-17239-8
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25:402–408. doi:10.1006/meth.2001.1262
  • Nistico L, Gieseke A, Stoodley P, Hall-Stoodley L, Kerschner JE, Ehrlich GD. 2009. Fluorescence “in situ” hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa. In: Sokolowski B, editors. Methods in Molecular Biology. Hatfield (UK): Humana Press, Springer; p. 191–212.
  • Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD. 2012. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 148:126–138. doi:10.1016/j.cell.2011.10.048
  • Nobile CJ, Johnson AD. 2015. Candida albicans biofilms and human disease. Annu Rev Microbiol. 69:71–92. doi:10.1146/annurev-micro-091014-104330
  • Pammi M, Liang R, Hicks J, Mistretta T-A, Versalovic J. 2013. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC Microbiol. 13:257. doi:10.1186/1471-2180-13-257
  • Peters BM, Jabra-Rizk MA, Scheper MA, Leid JG, Costerton JW, Shirtliff ME. 2010. Microbial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms. FEMS Immunol Med Microbiol. 59:493–503. doi:10.1111/j.1574-695X.2010.00710.x
  • Peters BM, Noverr MC. 2013. Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. Infect Immun. 81:2178–2189. doi:10.1128/IAI.00265-13
  • Peters BM, Ovchinnikova ES, Krom BP, Schlecht LM, Zhou H, Hoyer LL, Busscher HJ, van der Mei HC, Jabra-Rizk MA, Shirtliff ME. 2012. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology. 158:2975–2986. doi:10.1099/mic.0.062109-0
  • Poilvache H, Ruiz-Sorribas A, Sakoulas G, Rodriguez-Villalobos H, Cornu O, Van Bambeke F. 2020. Synergistic effects of pulsed lavage and antimicrobial therapy against Staphylococcus aureus biofilms in an in-vitro Model. Front Med. 7:527.
  • Rimachi Hidalgo KJ, Cabrini Carmello J, Carolina Jordão C, Aboud Barbugli P, de Sousa Costa CA, Garcia de Oliveira Mima E, Pavarina AC. 2019. Antimicrobial photodynamic therapy in combination with nystatin in the treatment of experimental oral candidiasis induced by Candida albicans resistant to fluconazole. Pharmaceuticals. 12:140. doi:10.3390/ph12030140
  • Røder HL, Sørensen SJ, Burmølle M. 2016. Studying bacterial multispecies biofilms: where to start? Trends Microbiol. 24:503–513. doi:10.1016/j.tim.2016.02.019
  • Rogiers O, Holtappels M, Siala W, Lamkanfi M, Van Bambeke F, Lagrou K, Van Dijck P, Kucharíková S. 2018. Anidulafungin increases the antibacterial activity of tigecycline in polymicrobial Candida albicans/Staphylococcus aureus biofilms on intraperitoneally implanted foreign bodies. J Antimicrob Chemother. 73:2806–2814. doi:10.1093/jac/dky246
  • Schlecht LM, Peters BM, Krom BP, Freiberg JA, Hänsch GM, Filler SG, Jabra-Rizk MA, Shirtliff ME. 2015. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology. 161:168–181. doi:10.1099/mic.0.083485-0
  • Schwartz K, Ganesan M, Payne DE, Solomon MJ, Boles BR. 2016. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol Microbiol. 99:123–134. doi:10.1111/mmi.13219
  • Tan L, Li SR, Jiang B, Hu XM, Li S. 2018. Therapeutic targeting of the Staphylococcus aureus accessory gene regulator (agr) system. Front Microbiol. 9:55.
  • Todd OA, Fidel PL, Harro JM, Hilliard JJ, Tkaczyk C, Sellman BR, Noverr MC, Peters BM. 2019. Candida albicans augments Staphylococcus aureus virulence by engaging the staphylococcal agr quorum sensing system. MBio. 10(3):1–16. doi:10.1128/mBio.00910-19
  • Xu Y, Rudkjøbing VB, Simonsen O, Pedersen C, Lorenzen J, Schønheyder HC, Nielsen PH, Thomsen TR. 2012. Bacterial diversity in suspected prosthetic joint infections: an exploratory study using 16S rRNA gene analysis. FEMS Immunol Med Microbiol. 65:291–304. doi:10.1111/j.1574-695X.2012.00949.x
  • Xue T, You Y, Shang F, Sun B. 2012. Rot and Agr system modulate fibrinogen-binding ability mainly by regulating clfB expression in Staphylococcus aureus NCTC8325. Med Microbiol Immunol. 201:81–92. doi:10.1007/s00430-011-0208-z
  • Yang M, Du K, Hou Y, Xie S, Dong Y, Li D, Du Y. 2019. Synergistic antifungal effect of amphotericin B-loaded poly(lactic-co-glycolic acid) nanoparticles and ultrasound against Candida albicans biofilms. Antimicrob Agents Chemother. 63: 1–13.
  • Zago CE, Silva S, Sanitá PV ,Barbugli PA, Dias CMI, Lordello VB, Vergani CE. 2015. Dynamics of biofilm formation and the interaction between Candida albicans and methicillin-susceptible (MSSA) and -resistant Staphylococcus aureus (MRSA). PLoS One. 10:e0123206.
  • Zheng Y, Joo H-S, Nair V, Le KY, Otto M. 2018. Do amyloid structures formed by Staphylococcus aureus phenol-soluble modulins have a biological function? Int J Med Microbiol. 308:675–682. doi:10.1016/j.ijmm.2017.08.010
  • Zmantar T, Chaieb K, Makni H, Miladi H, Abdallah F Ben, Mahdouani K, Bakhrouf A. 2008. Detection by PCR of adhesins genes and slime production in clinical Staphylococcus aureus. J Basic Microbiol. 48:308–314. doi:10.1002/jobm.200700289

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.