Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 5
472
Views
3
CrossRef citations to date
0
Altmetric
Review

Biofouling detection methods that are widely applicable and useful across disciplines: a mini-review

& ORCID Icon
Pages 494-505 | Received 03 Dec 2020, Accepted 03 May 2021, Published online: 01 Jul 2021

References

  • Ahmed Ali FA, Alam J, Kumar Shukla A, Alhoshan M, Khaled JM, Al-Masry WA, Alharbi NS, Alam M. 2019. Graphene oxide-silver nanosheet-incorporated polyamide thin-film composite membranes for antifouling and antibacterial action against Escherichia coli and bovine serum albumin. J Ind Eng Chem. 80:227–238. doi:10.1016/j.jiec.2019.07.052
  • Al-Shabib NA, Husain FM, Ahmed F, Khan RA, Ahmad I, Alsharaeh E, Khan MS, Hussain A, Rehman MT, Yusuf M, et al. 2016. Biogenic synthesis of zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci Rep. 6:36761. doi:10.1038/srep36761
  • Alasri A, Roques C, Cabassud C, Michel G, Aptel P. 1992. Effects of different biocides on a mixed biofilm produced on a Tygon tube and on ultrafiltration membranes. Spectra. 168:21–24.
  • Antoniani D, Bocci P, Maciag A, Raffaelli N, Landini P. 2010. Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol. 85:1095–1104. doi:10.1007/s00253-009-2199-x
  • Antony A, Fudianto R, Cox S, Leslie G. 2010. Assessing the oxidative degradation of polyamide reverse osmosis membrane - accelerated ageing with hypochlorite exposure. J Membr Sci. 347:159–164. doi:10.1016/j.memsci.2009.10.018
  • Aslantürk ÖS. 2017. In vitro cytotoxicity and cell viability assays: principles, advantages, and distadvantages. Genotoxicity - a predictable risk to our actual world. doi:10.5772/intechopen.71923
  • ASTM. 2017. Standard test method for testing disinfectant efficacy against pseudomonas aeruginosa biofilm using the MBEC Assay (E2799). ASTM International.
  • ASTM. 2019. Standard test method for determining disinfectant efficacy against biofilm grown in the CDC biofilm reactor using the single tube method (E2871). ASTM International.
  • Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T. 2007. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Appl Environ Microbiol. 73:3283–3290. doi:10.1128/AEM.02750-06
  • Bezek K, Nipič D, Torkar KG, Oder M, Dražić G, Abram A, Žibert J, Raspor P, Bohinc K. 2019. Biofouling of stainless steel surfaces by four common pathogens: the effects of glucose concentration, temperature and surface roughness. Biofouling. 35:273–283. doi:10.1080/08927014.2019.1575959
  • Biesta-Peters EG, Reij MW, Joosten H, Gorris LGM, Zwietering MH. 2010. Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus. Appl Environ Microbiol. 76:1399–1405. doi:10.1128/AEM.02336-09
  • Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. 2011. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 27:1017–1032. doi:10.1080/08927014.2011.626899
  • Buckingham-Meyer K, Goeres DM, Hamilton MA. 2007. Comparative evaluation of biofilm disinfectant efficacy tests. J Microbiol Methods. 70:236–244. doi:10.1016/j.mimet.2007.04.010
  • Buckley HL, Hart-Cooper WM, Kim JH, Faulkner DM, Cheng LW, Chan KL, Vulpe CD, Orts WJ, Amrose SE, Mulvihill MJ. 2017. Design and testing of safer, more effective preservatives for consumer products. ACS Sustain Chem Eng. 5:4320–4331. doi:10.1021/acssuschemeng.7b00374
  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. 1999. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 37:1771–1776. doi:10.1128/JCM.37.6.1771-1776.1999
  • CLSI. 2018. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed. CLSI guideline M07. Wayne (PA): Clinical and Laboratory Standards Institute.
  • Cockerill FR, Wiker MA, Alder J, Dudley MN, Eliopoulos GM, Ferraro MJ, Hardy DJ, Hecht DW, Hindler JA, Patel JB. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 9th ed. Wayne (PA): Clinical and Laboratory Standards Institute.
  • Costerton JW. 1999. Introduction to biofilm. Int J Antimicrob Agents. 11:217–221. doi:10.1016/s0924-8579(99)00018-7
  • Curtin AM, Thibodeau MC, Buckley HL. 2020. The best-practice organism for single-species studies of antimicrobial efficacy against biofilms is Pseudomonas aeruginosa. Membranes (Basel). 10:211. doi:10.3390/membranes10090211
  • Diogo P, Fernandes C, Caramelo F, Mota M, Miranda IM, Faustino MAF, Neves M, Uliana MP, de Oliveira KT, Santos JM, et al. 2017. Antimicrobial photodynamic therapy against endodontic Enterococcus faecalis and Candida albicans mono and mixed biofilms in the presence of photosensitizers: a comparative study with classical endodontic irrigants. Front Microbiol. 8:1–11. doi:10.3389/fmicb.2017.00498
  • Ferrera I, Mas J, Taberna E, Sanz J, Sánchez O. 2015. Biological support media influence the bacterial biofouling community in reverse osmosis water reclamation demonstration plants. Biofouling. 31:173–180. doi:10.1080/08927014.2015.1012640
  • Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol. 8:623–633. doi:10.1038/nrmicro2415
  • Fruchter R, Clayton MJ, Krawinkler H, Kunz J, Teicholz P. 1996. Interdisciplinary communication medium for collaborative conceptual building design. Adv Eng Softw. 25:89–101. doi:10.1016/0965-9978(95)00106-9
  • Gomes LC, Moreira JMR, Teodósio JS, Araújo JDP, Miranda JM, Simões M, Melo LF, Mergulhão FJ. 2014. 96-well microtiter plates for biofouling simulation in biomedical settings. Biofouling. 30:535–546. doi:10.1080/08927014.2014.890713
  • Güven N, Kaynak Onurdağ F. 2014. Investigation of antimicrobial and antibiofilm effects of some preservatives used in drugs, cosmetics and food products. Mikrobiyol Bul. 48:94–105. https://pubmed.ncbi.nlm.nih.gov/24506719.
  • Habimana O, Semião AJC, Casey E. 2014. The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes. J Membr Sci. 454:82–96. doi:10.1016/j.memsci.2013.11.043
  • Haney EF, Trimble MJ, Cheng JT, Vallé Q, Hancock REW. 2018. Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules. 8:29–22. doi:10.3390/biom8020029
  • He Z, Wang Q, Hu Y, Liang J, Jiang Y, Ma R, Tang Z, Huang Z. 2012. Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. Int J Antimicrob Agents. 40:30–35. doi:10.1016/j.ijantimicag.2012.03.016
  • Hirsch UM, Teuscher N, Rühl M, Heilmann A. 2019. Plasma-enhanced magnetron sputtering of silver nanoparticles on reverse osmosis membranes for improved antifouling properties. Surf Interfaces. 16:1–7. doi:10.1016/j.surfin.2019.04.003
  • Jafari M, D'haese A, Zlopasa J, Cornelissen ER, Vrouwenvelder JS, Verbeken K, Verliefde A, van Loosdrecht MCM, Picioreanu C. 2020. A comparison between chemical cleaning efficiency in lab-scale and full-scale reverse osmosis membranes: role of extracellular polymeric substances (EPS). J Membr Sci. 609:118189. doi:10.1016/j.memsci.2020.118189
  • Jennings JA, Courtney HS, Haggard WO. 2012. Cis-2-decenoic acid inhibits S. aureus growth and biofilm in vitro: a pilot study basic research. Clin Orthop Relat Res. 470:2663–2670. doi:10.1007/s11999-012-2388-2
  • Jensen P, Briales A, Brochmann RP, Wang H, Kragh KN, Kolpen M, Hempel C, Bjarnsholt T, Høiby N, Ciofu O. 2014. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms. Pathog Dis. 70:440–443. doi:10.1111/2049-632X.12120
  • Karkhanechi H, Takagi R, Ohmukai Y, Matsuyama H. 2013. Enhancing the antibiofouling performance of RO membranes using Cu(OH)2 as an antibacterial agent. Desalination. 325:40–47. doi:10.1016/j.desal.2013.06.015
  • Keelara S, Thakur S, Patel J. 2016. Biofilm formation by environmental isolates of Salmonella and their sensitivity to natural antimicrobials. Foodborne Pathog Dis. 13:509–516. doi:10.1089/fpd.2016.2145
  • Kim HS, Ham SY, Jang Y, Sun PF, Park JH, Hoon Lee J, Park HD. 2019. Linoleic acid, a plant fatty acid, controls membrane biofouling via inhibition of biofilm formation. Fuel. 253:754–761. doi:10.1016/j.fuel.2019.05.064
  • Kives J, Orgaz B, SanJosé C. 2006. Polysaccharide differences between planktonic and biofilm-associated EPS from Pseudomonas fluorescens B52. Colloids Surf B Biointerfaces. 52:123–127. doi:10.1016/j.colsurfb.2006.04.018
  • Kucera J. 2019. Biofouling of polyamide membranes: fouling mechanisms, current mitigation and cleaning strategies, and future prospects. Membranes (Basel). 9:111. doi:10.3390/membranes9090111
  • Lambadi PR, Sharma TK, Kumar P, Vasnani P, Thalluri SM, Bisht N, Pathania R, Navani NK. 2015. Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control. Int J Nanomed. 10:2155–2171. doi:10.2147/IJN.S72923
  • Li Y, Yang Y, Li C, Hou LA. 2019. Comparison of performance and biofouling resistance of thin-film composite forward osmosis membranes with substrate/active layer modified by graphene oxide. RSC Adv. 9:6502–6509. doi:10.1039/C8RA08838A
  • Ma W, Panecka M, Tufenkji N, Rahaman MS. 2018. Bacteriophage-based strategies for biofouling control in ultrafiltration: in situ biofouling mitigation, biocidal additives and biofilm cleanser. J Colloid Interface Sci. 523:254–265. doi:10.1016/j.jcis.2018.03.105
  • Macià MD, Rojo-Molinero E, Oliver A. 2014. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect. 20:981–990. doi:10.1111/1469-0691.12651
  • Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, et al.; Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. 2014. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 370:1198–1208. doi:10.1056/NEJMoa1306801
  • Manner S, Goeres DM, Skogman M, Vuorela P, Fallarero A. 2017. Prevention of Staphylococcus aureus biofilm formation by antibiotics in 96-microtiter well Ppates and drip flow reactors: critical factors influencing outcomes. Sci Rep. 7:43854. doi:10.1038/srep43854
  • McLean S, Dunn L, Palombo E. 2011. Bacteriophage biocontrol has the potential to reduce enterococci on hospital fabrics, plastic and glass. World J Microbiol Biotechnol. 27:1713–1717. doi:10.1007/s11274-010-0604-3
  • Meyer B. 2003. Approaches to prevention, removal and killing of biofilms. Int Biodeterior Biodegrad. 51:249–253. doi:10.1016/S0964-8305(03)00047-7
  • Miura Y, Watanabe Y, Okabe S. 2007. Membrane biofouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater: Impact of biofilm formation. Environ Sci Technol. 41:632–638. doi:10.1021/es0615371
  • Montgomery NL, Banerjee P. 2015. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light. BMC Res Notes. 8:12. doi:10.1186/s13104-015-1206-9
  • Najjar A, Sabri S, Al-Gaashani R, Atieh MA, Kochkodan V. 2019. Antibiofouling performance by polyethersulfone membranes cast with oxidized multiwalled carbon nanotubes and arabic gum. Membranes (Basel). 9:32. doi:10.3390/membranes9020032
  • Nguyen T, Roddick FA, Fan L. 2012. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes (Basel). 2:804–840. doi:10.3390/membranes2040804
  • Niska K, Knap N, Kędzia A, Jaskiewicz M, Kamysz W, Inkielewicz-Stepniak I. 2016. Capping agent-dependent toxicity and antimicrobial activity of silver nanoparticles: an in vitro study. Concerns about potential application in dental practice. Int J Med Sci. 13:772–782. doi:10.7150/ijms.16011
  • Nuryastuti T, Van Der Mei HC, Busscher HJ, Iravati S, Aman AT, Krom BP. 2009. Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Appl Environ Microbiol. 75:6850–6855. doi:10.1128/AEM.00875-09
  • Pan SF, Ke XX, Wang TY, Liu Q, Zhong LB, Zheng YM. 2019. Synthesis of silver nanoparticles embedded electrospun PAN nanofiber thin-film composite forward osmosis membrane to enhance performance and antimicrobial activity. Ind Eng Chem Res. 58:984–993. doi:10.1021/acs.iecr.8b04893
  • Pitts B, Hamilton MA, Zelver N, Stewart PS. 2003. A microtiter-plate screening method for biofilm disinfection and removal. J Microbiol Methods. 54:269–276. doi:10.1016/s0167-7012(03)00034-4
  • Ramesh A, Lee DJ, Wang ML, Hsu JP, Juang RS, Hwang KJ, Liu JC, Tseng SJ. 2006. Biofouling in membrane bioreactor. Sep Sci Technol. 411345–411370. doi:10.1080/01496390600633782
  • Raval HD, Makwana P, Sharma S. 2018. Biofouling of polysulfone and polysulfone-graphene oxide nanocomposite membrane and foulant removal. Mater Res Express. 5. doi:10.1088/2053-1591/aacc82
  • Rosenberg M, Azevedo NF, Ivask A. 2019. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci Rep. 9:12. doi:10.1038/s41598-019-42906-3
  • Sabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R. 2014. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Methods. 105:134–140. doi:10.1016/j.mimet.2014.07.024
  • Saeki D, Yonamine G, Matsuyama H. 2021. Effect of hydrophilic polymer modification of reverse osmosis membrane surfaces on organic adsorption and biofouling behavior. Colloids Surf A. 609:125680. doi:10.1016/j.colsurfa.2020.125680
  • Sanawar H, Bucs SS, Pot MA, Zlopasa J, Farhat NM, Witkamp GJ, Kruithof JC, van Loosdrecht MCM, Vrouwenvelder JS. 2019. Pilot-scale assessment of urea as a chemical cleaning agent for biofouling control in spiral-wound reverse osmosis membrane elements. Membranes (Basel) 9:117. doi:10.3390/membranes9090117
  • Sanawar H, Pinel I, Farhat NM, Bucs SS, Zlopasa J, Kruithof JC, Witkamp GJ, van Loosdrecht MCM, Vrouwenvelder JS. 2018. Enhanced biofilm solubilization by urea in reverse osmosis membrane systems. Water Res. 1:100004. doi:10.1016/j.wroa.2018.10.001
  • Sandoe JAT, Wysome J, West AP, Heritage J, Wilcox MH. 2006. Measurement of ampicillin, vancomycin, linezolid and gentamicin activity against enterococcal biofilms. J Antimicrob Chemother. 57:767–770. doi:10.1093/jac/dkl013
  • Schopf A, Delatolla R, Mathew R, Tsitouras A, Kirkwood KM. 2018. Investigation of copper inhibition of nitrifying moving bed biofilm (MBBR) reactors during long term operations. Bioprocess Biosyst Eng. 41:1485–1495. doi:10.1007/s00449-018-1976-2
  • Shukla AK, Alam J, Ansari MA, Alhoshan M, Ali FAA. 2018. Antimicrobial and antifouling properties of versatile PPSU/carboxylated GO nanocomposite membrane against Gram-positive and Gram-negative bacteria and protein. Environ Sci Pollut Res Int. 25:34103–34113. doi:10.1007/s11356-018-3212-7
  • Soleymani Lashkenari A, Hamed Mosavian MT, Peyravi M, Jahanshahi M. 2019. Biofouling mitigation of bilayer polysulfone membrane assisted by zinc oxide-polyrhodanine couple nanoparticle. Prog Org Coat. 129:147–158. doi:10.1016/j.porgcoat.2018.12.012
  • Stiefel P, Mauerhofer S, Schneider J, Maniura-Weber K, Rosenberg U, Ren Q. 2016. Enzymes enhance biofilm removal efficiency of cleaners. Antimicrob Agents Chemother. 60:3647–3652. doi:10.1128/AAC.00400-16
  • Stiefel P, Rosenberg U, Schneider J, Mauerhofer S, Maniura-Weber K, Ren Q. 2016. Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system. Appl Microbiol Biotechnol. 100:4135–4145. doi:10.1007/s00253-016-7396-9
  • Stiefel P, Schmidt-Emrich S, Maniura-Weber K, Ren Q. 2015. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 15:366–369. doi:10.1186/s12866-015-0376-x
  • Stocks SM. 2004. Mechanism and use of the commercially available viability stain, BacLight. Cytometry A. 61:189–195. doi:10.1002/cyto.a.20069
  • Uzer Celik E, Tunac AT, Ates M, Sen BH. 2016. Antimicrobial activity of different disinfectants against cariogenic microorganisms. Braz Oral Res. 30:e125. doi:10.1590/1807-3107BOR-2016.vol30.0125
  • Vanysacker L, Boerjan B, Declerck P, Vankelecom IFJ. 2014. Biofouling ecology as a means to better understand membrane biofouling. Appl Microbiol Biotechnol. 98:8047–8072. doi:10.1007/s00253-014-5921-2
  • Venkata Nancharaiah Y, Reddy GKK, Lalithamanasa P, Venugopalan VP. 2012. The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant. Biofouling. 28:1141–1149. doi:10.1080/08927014.2012.736966
  • Wang J, Gao X, Yu H, Wang Q, Ma Z, Li Z, Zhang Y, Gao C. 2019. Accessing of graphene oxide (GO) nanofiltration membranes for microbial and fouling resistance. Sep Purif Technol. 215:91–101. doi:10.1016/j.seppur.2019.01.018
  • Watnick P, Kolter R. 2000. Biofilm, City of microbes. J Bacteriol. 182:2675–2679. doi:10.1128/jb.182.10.2675-2679.2000
  • Weber DJ, Rutala WA. 2013. Self-disinfecting surfaces: review of current methodologies and future prospects. Am J Infect Control. 41:S31–S35. doi:10.1016/j.ajic.2012.12.005
  • Wen Y, Chen Y, Wu Z, Liu M, Wang Z. 2019. Thin-film nanocomposite membranes incorporated with water stable metal-organic framework CuBTTri for mitigating biofouling. J Membr Sci. 582:289–297. doi:10.1016/j.memsci.2019.04.016
  • Wilson C, Lukowicz R, Merchant S, Valquier-Flynn H, Caballero J, Sandoval J, Okuom M, Huber C, Brooks TD, Wilson E, et al. 2017. Quantitative and qualitative assessment methods for biofilm growth: a mini-review. Res Rev J Eng Technol. 6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133255/pdf/nihms935462.pdf
  • Wood TK. 2009. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol. 11:1–15. doi:10.1111/j.1462-2920.2008.01768.x
  • World Health Organization. 2017. Microbial aspects. In: Guidel drink qual. Vol. 4. Geneva (Switzerland): WHO; p. 7.
  • Yang Z, Takagi R, Zhang X, Yasui T, Zhang L, Matsuyama H. 2021. Engineering a dual-functional sulfonated polyelectrolyte-silver nanoparticle complex on a polyamide reverse osmosis membrane for robust biofouling mitigation. J Membr Sci. 618:118757. doi:10.1016/j.memsci.2020.118757
  • Yoneda S, Kawarai T, Narisawa N, Tuna EB, Sato N, Tsugane T, Saeki Y, Ochiai K, Senpuku H. 2013. Effects of short-chain fatty acids on Actinomyces naeslundii biofilm formation. Mol Oral Microbiol. 28:354–365. doi:10.1111/omi.12029
  • Zhang Y, Ruan H, Guo C, Liao J, Shen J, Gao C. 2020. Thin-film nanocomposite reverse osmosis membranes with enhanced antibacterial resistance by incorporating p-aminophenol-modified graphene oxide. Sep Purif Technol. 234:116017. doi:10.1016/j.seppur.2019.116017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.