Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 4
1,664
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A rapid benchtop method to assess biofilm on marine fouling control coatings

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 452-464 | Received 19 Oct 2020, Accepted 09 May 2021, Published online: 21 Jun 2021

References

  • Andersson J, Oliveira DR, Yeginbayeva I, Leer-Andersen M, Bensowa RE. 2020. Review and comparison of methods to model ship hull roughness. Appl Ocean Res. 99:102–119. doi:10.1016/j.apor.2020.102119
  • Benschop HOG, Guerin AJ, Brinkmann A, Dale ML, Finnie AA, Breugem WP, Clare AS, Stübing D, Price C, Reynolds KJ. 2018. Drag-reducing riblets with fouling-release properties: development and testing. Biofouling. 34:532–544. doi:10.1080/08927014.2018.1469747
  • Briand JF. 2009. Marine antifouling laboratory bioassays: an overview of their diversity. Biofouling. 25:297–311. doi:10.1080/08927010902745316
  • Cebeci T, Bradshaw P. 1977. Momentum transfer in boundary layers. Washington (DC): Hemisphere; p. 319–321.
  • Childs PRN. 2011. Rotational flow. Oxford: Butterworth-Heinemann (Elsevier).
  • Colebrook CF. 1939. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J Institut Civil Engn. 11:133–156. doi:10.1680/ijoti.1939.13150
  • Demirel YK, Turan O, Incecik A. 2017. Predicting the effect of biofouling on ship resistance using CFD. Appl Ocean Res. 62:100–118. doi:10.1016/j.apor.2016.12.003
  • Dennington S, Mekkhunthod P, Rides M, Gibbs D, Salta M, Stoodley V, Wharton J, Stoodley P. 2015. Miniaturized rotating disc rheometer test for rapid screening of drag reducing marine coatings. Surf Topogr: Metrol Prop. 3:034004. doi:10.1088/2051-672X/3/3/034004
  • Dobretsov S, Raeid MMA, Teplitski M. 2013. Mini-review: inhibition of biofouling by marine microorganisms. Biofouling. 29:423–441. doi:10.1080/08927014.2013.776042
  • Dorfman LA. 1963. Hydrodynamic resistance and the heat loss of rotating solids. 1st ed. Edinburgh (UK): Oliver and Boyd; p. 1–71.
  • Finnie A, Williams DN. 2010. Chapter 13, Paint and coatings technology for the control of marine fouling. In: Dürr S, Thomason JC, editors. Biofouling. Oxford (UK): Blackwell Publishing Ltd; p. 185–206.
  • Flack KA, Schultz MP. 2014. Roughness effects on wall-bounded turbulent flows. Physics of Fluids. 26:101305. doi:10.1063/1.4896280
  • Galli G, Martinelli E. 2017. Amphiphilic polymer platforms: surface engineering off films for marine antibiofouling. Macromol Rapid Commun. 38. 1600704. doi:10.1002/marc.201600704
  • Granville PS. 1973. The torque and turbulent boundary layer of rotating sisks with smooth and rough surfaces, and in drag-reducing polymer solutions. J Ship Res. 1:181–195.
  • Granville PS. 1978. Similarity-law characterization methods for arbitrary hydrodynamic roughnesses Bethesda (MD): David W. Taylor Naval Ship Research and Development Center; p. 20084.
  • Granville PS. 1982. Drag characterization method for arbitrarily rough surfaces by means of rotating disks. J Fluids Eng. 104:373–377. doi:10.1115/1.3241854
  • Grigson CWB. 1984. Nikuradse’s experiment. AIAA Journal. 22:999–1001. doi:10.2514/3.48538
  • Hoagland KD, Rosowski JR, Gretz MR, Roemer SC. 1993. Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol. 29:537–566. doi:10.1111/j.0022-3646.1993.00537.x
  • Holm E, Schultz MP, Haslbeck E, Talbott W, Field A. 2004. Evaluation of hydrodynamic drag on experimental fouling-release surfaces, using rotating disks. Biofouling. 20:219–226. doi:10.1080/08927010400011245
  • Hunsucker JT. 2016. Quantification of frictional drag due to biofouling on in-service ships [dissertation]. Miami (FL): College of Engineering at Florida Institute of Technology.
  • ITTC TRC. 2011. Final report and recommendations to the 26th ITTC. ITTC 26th Conference; Rio de Janeiro.
  • Kaye GWC, Laby TH. 1995. Tables of physical and chemical constants. [accessed 2016]. http://www.kayelaby.npl.co.uk/.
  • Lejars M, Margaillan A, Bressy C. 2012. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev. 112:4347–4390. doi:10.1021/cr200350v
  • Ligrani PM, Moffat RJ. 1986. Structure of transitionally rough and fully rough turbulent boundary layers. J Fluid Mech. 162:69–98. doi:10.1017/S0022112086001933
  • Loeb G. 1981. Drag enhancement of microbial slime films on rotating discs. Washington (DC): Naval Research Laboratory.
  • Loeb GI, Laster D, Gracik T. 1984. The influence of microbial fouling films on hydrodynamic drag of rotating discs. In: Costlow JD, Tipper RC, editors. Marine biodeterioration: an interdisciplinary study. Annapolis (MD): Naval Institute Press; p. 88–94.
  • Moritz Bollmann TB, Colijn F, Ebinghaus R, Froese R, Güssow K, Khalilian S, Krastel S, Körtzinger A, Langenbuch M, Latif M, et al. 2010. Living with the oceans: a report on the state of the world’s oceans. Hamburg: The Future Ocean, The International Ocean Institute.
  • Muthukrishnan T, Abed RM, Dobretsov S, Kidd B, Finnie AA. 2014. Long-term microfouling on commercial biocidal fouling control coatings. Biofouling. 30:1155–1164. doi:10.1080/08927014.2014.972951
  • Nelka JJ. 1973. Evaluation of a rotating disk apparatus: drag of a disk rotating in a viscous fluid. Bethesda (MD): David W Taylor naval ship research and development center ship performance dept.
  • Niebles Atencio BN, Chernoray V. 2019. A resolved RANS CFD approach for drag characterization of antifouling paints. Ocean Eng. 171:519–532. doi:10.1016/j.oceaneng.2018.11.022
  • Nikuradse J. 1950. Laws of flow in rough pipes: translation of “Stromungsgesetze in rauhen Rohren.” VDI-Forschungsheft 361. Beilage zu “Forschung auf dem Gebiete des Ingenieurwesens” Ausgabe B Band 4, July/August 1933. Technical Memorandum 92. National Advisory Committee for Aeronautics. Washington DC, USA.
  • Paris C. 2019. Shipowners seek to slow services to meet emissions limits. The Wall Street J [accessed 2020 Mar 28]. https://www.wsj.com/articles/shipowners-seek-to-slow-services-to-meet-emissions-limits-11557480601.
  • Peters LC. 1967. Pressure distribution on a fixed surface parallel to a rotating disk [dissertation]. Iowa State University, Iowa.
  • Ramsden R, Longyear J. 2014. Section 2 - From laboratory to ship: pragmatic development of fouling control coatings in industry. In Sergey D, David NW., Jeremy CT, editors. Biofouling Methods. Hoboken (NJ): John Wiley & Sons; p. 358–365.
  • Salta M, Wharton JA, Blache Y, Stokes KR, Briand JF. 2013. Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol. 15:2879–2893. doi:10.1111/1462-2920.12186
  • Schultz MP, Flack KA. 2003. Turbulent boundary layers over surfaces smoothed by sanding. J Fluids Eng. 125:863–870. doi:10.1115/1.1598992
  • Schultz MP, Myers A. 2003. Comparison of three roughness function determination methods. Exp Fluids. 35:372–379. doi:10.1007/s00348-003-0686-x
  • Schultz MP. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling. 23:331–341. doi:10.1080/08927010701461974
  • Sdplastics.com. 2020. National City CA 9150 USA: San Diego Plastics, Inc. [accessed 2020 Aug 30]. http://www.sdplastics.com/delrin/delrin[1].pdf.
  • Shen YT, Hughes MJ, inventors; US Secretary of the Navy, assignee. 2015. Ship resistance prediction using a turbulent spot inducer in model testing. USA patent US9588011B1.
  • Stenson P, Kidd B, Finnie A. 2013. Measurement and impact of surface topology and hydrodynamic drag of fouling control coatings. Hydro testing forum. The 3rd International Conference on Advanced Model Measurement Technology for the Maritime Industry (AMT’13); Gdansk, Poland.
  • Townsin RL, Anderson CD. 2009. Fouling control coatings using low surface energy, foul release technology. In: Hellio C, Yebra D, editors. Advances in marine antifouling coatings and technologies. Cambridge (UK): Woodhead Publishing; p. 693–708.
  • Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. 50:75–104. doi:10.1016/j.porgcoat.2003.06.001
  • Yeginbayeva IA, Granhag L, Chernoray V. 2019. A multi-aspect study of commercial coatings under the effect of surface roughness and fouling. Prog Org Coat. 135:352–367. doi:10.1016/j.porgcoat.2019.05.041