Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 6
115
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Carbon nanotube survivability in marine environments and method for biofouling removal

, , , , , & show all
Pages 593-604 | Received 09 Dec 2021, Accepted 11 Jul 2022, Published online: 04 Aug 2022

References

  • Abarzua S, Jakubowski S. 1995. Biotechnological investigation for the prevention of biofouling. 1. Biological and biochemical principles for the prevention of biofouling. Mar Ecol Prog Ser. 123:301–312. doi:10.3354/meps123301
  • Abbott A, Abel PD, Arnold DW, Milne A. 2000. Cost-benefit analysis of the use of TBT: the case for a treatment approach. Sci Total Environ. 258:5–19. doi:10.1016/S0048-9697(00)00505-2
  • Alcantara J, De la Fuente D, Chico B, Simancas J, Diaz I, Morcillo M. 2017. Marine atmospheric corrosion of carbon steel: a review. Materials. 10:406. doi:10.3390/ma10040406
  • Beech WB, Sunner J. 2004. Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol. 15:181–186. doi:10.1016/j.copbio.2004.05.001
  • Beigbeder A, Degee P, Conlan SL, Mutton RJ, Clare AS, Pettitt ME, Callow ME, Callow JA, Dubois P. 2008. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling. 24:291–302. doi:10.1080/08927010802162885
  • Beigbeder A, Mincheva R, Pettitt ME, Callow ME, Callow JA, Claes M, Dubois P. 2010. Marine fouling release silicone/carbon nanotube nanocomposite coatings: on the importance of the nanotube dispersion state. J Nanosci Nanotechnol. 10:2972–2978. doi:10.1166/jnn.2010.2185
  • Brady RF, Singer IL. 2000. Mechanical factors favoring release from fouling release coatings. Biofouling. 15:73–81. doi:10.1080/08927010009386299
  • Buskens P, Wouters M, Rentrop C, Vroon Z. 2013. A brief review of environmentally benign antifouling and foul-release coatings for marine applications. J Coat Technol Res. 10:29–36. doi:10.1007/s11998-012-9456-0
  • Carl C, Poole AJ, Vucko MJ, Williams MR, Whalan S, de Nys R. 2012. Enhancing the efficacy of fouling-release coatings against fouling by Mytilus galloprovincialis using nanofillers. Biofouling. 28:1077–1091. doi:10.1080/08927014.2012.728588
  • Cavas L, Yildiz PG, Mimigianni P, Sapalidis A, Nitodas S. 2018. Reinforcement effects of multiwall carbon nanotubes and graphene oxide on PDMS marine coatings. J Coat Technol Res. 15:105–120. doi:10.1007/s11998-017-9956-z
  • Chambers LD, Stokes KR, Walsh FC, Wood RJK. 2006. Modern approaches to marine antifouling coatings. Surf Coat Tech. 201:3642–3652. doi:10.1016/j.surfcoat.2006.08.129
  • Cress CD, Ganter MJ, Schauerman CM, Soule K, Rossi JE, Lawlor CC, Puchades I, Ubnoske SM, Bucossi AR, Landi BJ. 2017. Carbon nanotube wires with continuous current rating exceeding 20 Amperes. J Appl Phys. 122:025101.
  • Dafforn KA, Lewis JA, Johnston EL. 2011. Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull. 62:453–465. doi:10.1016/j.marpolbul.2011.01.012
  • Farro NW, Veleva L, Aguilar P. 2009. Copper marine corrosion: I. Corrosion rates in atmospheric and seawater environments of Peruvian port. TOCORRJ. 2:130–138. doi:10.2174/1876503300902010130
  • Irani F, Jannesari A, Bastani S. 2013. Effect of fluorination of multiwalled carbon nanotubes (MWCNTs) on the surface properties of fouling-release silicone/MWCNTs coatings. Prog Org Coat. 76:375–383. doi:10.1016/j.porgcoat.2012.10.023
  • Magin CM, Cooper SP, Brennan AB. 2010. Non-toxic antifouling strategies. Mater Today. 13:36–44. doi:10.1016/S1369-7021(10)70058-4
  • Martinelli E, Suffredini M, Galli G, Glisenti A, Pettitt ME, Callow ME, Callow JA, Williams D, Lyall G. 2011. Amphiphilic block copolymer/poly(dimethylsiloxane) (PDMS) blends and nanocomposites for improved fouling-release. Biofouling. 27:529–541. doi:10.1080/08927014.2011.584972
  • Naval Ships' Technical Manual. 2006. 5 ed. Naval Sea Systems Command. Washington, D.C.
  • Ng KW, Lam WH, Pichiah S. 2013. A review on potential applications of carbon nanotubes in marine current turbines. Renew Sust Energy Rev. 28:331–339. doi:10.1016/j.rser.2013.08.018
  • Nurioglu AG, Esteves ACC, de With G. 2015. Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. J Mater Chem B. 3:6547–6570. doi:10.1039/c5tb00232j
  • Puchades I, Lawlor CC, Schauerman CM, Bucossi AR, Rossi JE, Cox ND, Landi BJ. 2015. Mechanism of chemical doping in electronic-type-separated single wall carbon nanotubes towards high electrical conductivity. J Mater Chem C. 3:10256–10266. doi:10.1039/C5TC02053K
  • Rao R, Pint CL, Islam AE, Weatherup RS, Hofmann S, Meshot ER, Wu FQ, Zhou CW, Dee N, Amama PB, et al. 2018. Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano. 12:11756–11784. doi:10.1021/acsnano.8b06511
  • Sankar GG, Sathya S, Murthy PS, Das A, Pandiyan R, Venugopalan VP, Doble M. 2015. Polydimethyl siloxane nanocomposites: their antifouling efficacy in vitro and in marine conditions. Int Biodeter Biodegr. 104:307–314. doi:10.1016/j.ibiod.2015.05.022
  • Schauerman CM, Ganter MJ, Gaustad G, Babbitt CW, Raffaelle RP, Landi BJ. 2012. Recycling single-wall carbon nanotube anodes from lithium ion batteries. J Mater Chem. 22:12008–12015. doi:10.1039/c2jm31971c
  • Schultz MP. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling. 23:331–341. doi:10.1080/08927010701461974
  • Soule KJ, Lawlor CC, Bucossi AR, Cress CD, Puchades I, Landi BJ. 2019. Sustaining enhanced electrical conductivity in KAuBr4-doped carbon nanotube wires at high current densities. ACS Appl Nano Mater. 2:7340–7349. doi:10.1021/acsanm.9b01859
  • Sun Y, Lang YH, Sun Q, Liang S, Liu YK, Zhang ZZ. 2016. Effect of anti-biofouling potential of multi-walled carbon nanotubes-filled polydimethylsiloxane composites on pioneer microbial colonization. Colloids Surf B Biointerfaces. 145:30–36. doi:10.1016/j.colsurfb.2016.04.033
  • Sun Y, Zhang ZZ. 2016a. Anti-biofouling property studies on carboxyl-modified multi-walled carbon nanotubes filled PDMS nanocomposites. World J Microb Biot. 32:148.
  • Sun Y, Zhang ZZ. 2016b. New anti-biofouling carbon nanotubes-filled polydimethylsiloxane composites against colonization by pioneer eukaryotic microbes. Int Biodeter Biodegr. 110:147–154. doi:10.1016/j.ibiod.2016.03.019
  • Sun Y, Zhang ZZ. 2017. Carboxyl-modified multi-walled carbon nanotubes-filled PDMS nanocomposites for anti-biofouling applications. J Adhes Sci Technol. 31:41–54. doi:10.1080/01694243.2016.1200857
  • Tomkiewicz A, Cress CD, Landi BJ. 2020. Enhanced saltwater stability of CNT wires under electrical bias. Carbon. 168:180–192. doi:10.1016/j.carbon.2020.06.060
  • Upadhyayula VKK, Gadhamshetty V. 2010. Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review. Biotechnol Adv. 28:802–816. doi:10.1016/j.biotechadv.2010.06.006
  • Wahl M. 1989. Marine epibiosis.1. Fouling and antifouling - some basic aspects. Mar Ecol Prog Ser. 58:175–189. doi:10.3354/meps058175
  • Yang JL, Li YF, Guo XP, Liang X, Xu YF, Ding DW, Bao WY, Dobretsov S. 2016. The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement. Biofouling. 32:763–777. doi:10.1080/08927014.2016.1197210
  • Zhang DJ, Liu ZH, Wu GQ, Yang ZJ, Cui Y, Li H, Zhang YM. 2021. Fluorinated carbon nanotube superamphiphobic coating for high-efficiency and long-lasting underwater antibiofouling surfaces. ACS Appl Bio Mater. 4:6351–6360. doi:10.1021/acsabm.1c00582

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.